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ELİF SARITAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2023





Approval of the thesis:

EXPECTATION PROPAGATION FOR STATE ESTIMATION WITH
DISCRETE-VALUED HIDDEN RANDOM VARIABLES
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ABSTRACT

EXPECTATION PROPAGATION FOR STATE ESTIMATION WITH
DISCRETE-VALUED HIDDEN RANDOM VARIABLES

Sarıtaş, Elif

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Umut Orguner

February 2023, 114 pages

In this thesis, the expectation propagation (EP) approach of Minka is considered for

the estimation problems in dynamical systems with discrete hidden random variables

where optimal posteriors are usually intractable. The concept of context adjustment is

introduced to avoid/alleviate indefinite covariance problems encountered in standard

EP implementations in a systematic way. Additionally, the moment projection (M-

projection) problem involving pseudo-Gaussian likelihoods as factors is solved to be

used in the backward pass of the proposed smoothers.

The first type of estimation problem of interest investigates the so-called jump Markov

linear systems (JMLS), where the state dynamics and/or measurement relation jumps

between different alternatives based on the state of a Markov chain. This type of sys-

tem model is extensively used in applications such as target tracking, fault detection

and isolation, and machine learning. In the thesis, filtering and smoothing algorithms

are derived using EP with context adjustment for JMLSs, and their relation to the ex-

isting methods in the literature is discussed. The simulation results on several scenar-

ios show that the proposed algorithms have similar or better performance compared

with the alternative methods.
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The second type of problem considered in the thesis is the state estimation under

measurement origin uncertainty. This problem, also known as data association or

correspondence problem, frequently appears in applications such as sensor fusion

and target tracking with imperfect sensors. A fixed-interval smoother based on EP

with context adjustment is presented for the data association in multi-target track-

ing problem. Moreover, the suggested smoother is adapted to the filtering problem

through a sliding-window mechanism. The proposed methods are compared to their

alternatives with a discussion of their benefits and shortcomings.

Keywords: Expectation propagation, jump Markov linear systems, switching dynam-

ical systems, state estimation, data association, multi-target tracking, smoothing, fil-

tering.
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ÖZ

AYRIK DEĞERLİ GİZLİ RASTGELE DEĞİŞKEN İÇEREN DURUM
KESTİRİMİ İÇİN BEKLENTİ YAYILIMI

Sarıtaş, Elif

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Umut Orguner

Şubat 2023 , 114 sayfa

Bu tezde, en iyi sonsal çözümün genellikle hesaplanamaz olduğu ayrık değerli gizli

rastgele değişken içeren dinamik sistemlerde durum kestirimi problemleri, Minka ta-

rafından önerilen beklenti yayılımı (EP) yaklaşımıyla ele alınmıştır. EP uygulama-

larında sistematik olarak karşılaşılan belirsiz ortak değişinti matrisi problemini ön-

lemek için bağlam ayarlama kavramı ortaya atılmıltır. Ayrıca, önerilen düzleştime

algoritmalarının geri yönde geçişlerinde kullanılmak üzere, sözde-Gauss olabilirlik

fonksiyonu formunda çarpan içeren moment izdüşüm problemi çözülmüştür.

İrdelenen kestirim problemlerinden ilki, durum dinamiğinin veya ölçüm ilişkisinin

bir Markov zincirinin durumuna bağlı olarak çeşitli seçenekler arasında atladığı Mar-

kov atlamalı doğrusal sistemlerde(JMLS) durum kestirimi problemidir. Bu tip sis-

tem modeli, hedef izleme, hata tespiti ile ayrıştırılması ve makine öğrenmesi gibi

alanlarda yoğunlukla kullanılmaktadır. Bu çalışmada, JMLS’ler için EP’ye dayanan

özgün süzme ve düzleştirme algoritmaları türetilip literatürdeki diğer metotlarla iliş-

kileri araştırılmıştır. Çeşitli senaryolarla yürütülen benzetim çalışmalarının sonuçları,

önerilen metotların benzerleriyle aynı oranda ya da onlardan daha başarılı olduğunu
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ortaya koymuştur.

Çalışmada ele alınan diğer problem ise ölçüm - kaynak belirsizliği altında durum kes-

tirimidir. Veri eşleme ya da örtüşme problemi olarak da bilinen bu problemle, duyucu

tümleştirme ve hedef takibi gibi yetersiz veri üreten duyucu içeren uygulamalarda

sıklıkla karşılaşılmaktadır. Bu tez çalışmasında, çoklu hedep takibinde veri eşleme

problemi için, sabit aralıklı bir düzleştirici türetilmiştir. Ayrıca önerilen düzleştirici,

kayar pencere aracılığıyla süzgeç olarak da uyarlanmıştır. Önerilen yöntemler ben-

zerleri ile kıyaslanmış ve faydaları ile eksiklikleri üzerinde durulmuştur.

Anahtar Kelimeler: Beklenti yayılımı, Markov atlamalı doğrusal sistemler, anahtar-

lamalı dinamik sistemler, durum kestirimi, veri eşleme, çoklu hedef takibi, süzme,

düzleştirme.
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That’s all folks!
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CHAPTER 1

INTRODUCTION

With the ever-increasing computational capabilities and the developments in sensor

technology, Bayesian state estimation [3] is an indispensable part of engineering prob-

lems involving dynamical systems. It has been widely applied and deeply studied in

various areas such as target tracking [4] [5], robotics [6] [7], biology [8], economet-

rics [9] [10], machine learning [11] [12], and so forth.

Despite the advances in this field, some problems still remain open for further re-

search due to their complex nature. One class of such problems is inference in hybrid

systems, that is, the systems containing discrete-valued hidden random values in ad-

dition to a continuous base variable. This type of random variable is frequently incor-

porated into probabilistic models to describe the phenomena that directly or indirectly

affect the observations, such as switching system or measurement dynamics, model

outliers [13], and fault diagnosis [14]. Though the hybrid probabilistic representation

of a problem can be handy, finding the optimal solution is an N P-hard problem [2].

Consider the following simple example of a hybrid probabilistic model in Fig. 1.1

adopted from [2] where r1, . . . , rN are discrete variables and x1, . . . , xN are the con-

tinuous base states to be estimated. Assuming that the base states are conditionally-

Gaussian and the discrete-valued variables are binary, we are interested in the follow-

ing marginalized density.

p(xn) =
∑

{rj}Nj=1

∫
{xi}Ni=1
i ̸=n

p(x1, . . . , xN , r1, . . . , rN) (1.1)

where n ∈ {1, . . . , N}. When n = 1, the density is written as

p(x1) =
∑
r1

p(x1 | r1)p(r1), (1.2)

1



r1 r2 rN

x1 x2 xN

Figure 1.1: A simple hybrid model adopted from [2].

where we make use of the chain rule. Even in this simple case, the marginalized

density turns into a mixture of Gaussians with two modes. Taking it one step further

and writing the distribution for n = 2 gives

p(x2) =
∑
r2

p(r2)

∫
x1

p(x2 | r2, x1)
∑
r1

p(x1 | r1)p(r1), (1.3)

which yields a mixture of Gaussians with 22 components. If one repeats the same pro-

cedure up to time n, the marginalized density for xn, i.e., p(xn), will be a Gaussian

mixture with 2n number of modes. Each of these modes corresponds to a hypothesis,

essentially a description of one possible history for the discrete state, rn. Thus, the

time and space required to compute the estimates grow exponentially, indicating that

the optimal solution for state estimation in hybrid systems is intractable. There exist

various methods in the literature to maintain the number of hypotheses at a manage-

able level; however, they give sub-optimal solutions. The pruning method discards

the hypotheses/mixture modes with low probability to reduce the number of stored

hypotheses, whereas merging/collapsing approximates the mixture of Gaussians with

a lower number of components. In the probabilistic graphical modeling framework,

one way to reduce the computational burden is to remove some of the links between

the nodes, which implies eliminating some of the conditional dependencies in the

model [11]. Message passing algorithms, such as loopy belief propagation [15], ex-

pectation propagation(EP) [16] are applied on these approximate graphs to obtain

approximate solutions to inference in hybrid networks.

In this thesis, we will resort to EP to achieve better approximate solutions to some

state estimation problems having discrete-valued random variables. To this end, we
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will propose an improved version of EP that resolves EP’s numerical stability issues

arising in implementations. Our approach is twofold. Firstly, we will introduce an ad-

ditional parameter to EP that controls the information flow in the probabilistic graph.

We will name this new version of EP as expectation propagation with context ad-

justment (EPwCA). Secondly, we will make use of the solution for the M-projection

(moment projection) problem that approximates a Gaussian density with a pseudo-

likelihood function. To the best of our knowledge, this problem has not been solved

before; using its results, we will suggest a new form of factor in the EP factor graphs

that reflect the exact probabilistic model more truthfully.

Combining the new EP approach with the better approximated probabilistic models,

we will examine two different state estimation problems with discrete-valued hidden

random variables in their models in this study. We first tackle the state estimation

problem in the jump-Markov linear systems (JMLSs), also known as switching linear

dynamical systems, that are widely used to model the changes in the behavior of the

systems. Such changes may be due to operational reasons, or they can stem from

system failures or environmental disturbances. The discrete-valued random variable

is included in the probabilistic models to represent the mode of operation. They have

been used in various fields for example econometrics [17], classification of human

motion [18], music transcription [19], and maneuvering target tracking [4]. We will

derive a smoother and a filter for JMLSs in the framework of EP. The second problem

we study in this thesis is the state estimation under measurement origin uncertainty,

also known as the data association or correspondence problem in the literature [2].

The discrete random variable is used as an association/correspondence variable that

determines the source/origin of the measurements. Some example applications of this

problem from various fields are identity resolution and word alignment [20] problems

in text processing, image registration in computer vision [2], and genome correspon-

dence problem [21] in biology. In this thesis, we will address the target tracking

problem under the measurement origin uncertainty, which has been a long-studied

topic in the tracking community [5], [4]. When a set of measurements with no ori-

gin information is received at a single scan, their source should be identified before

inferring the state. Using the proposed variant of EP, we will derive a fixed-interval

smoother and a filter.
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1.1 Main Contributions

Our contributions in this thesis are as follows.

• We introduce the concept of context adjustment to overcome the indefinite co-

variance matrix problem encountered in EP implementations. We name this

version of EP as Expectation Propagation with Context Adjustment (EPwCA),

and it is first proposed in

E. Sarıtaş and U. Orguner, "Expectation Propagation with Context Adjustment

for Smoothing of Jump Markov Linear Systems," submitted to IEEE Transac-

tions on Aerospace and Electronic Systems on May 29, 2022, and revised on

January 3, 2023.

• We solve the M-projection problem that involves the pseudo-likelihood func-

tion as the approximating function, which is not previously attempted in the

literature. Our approach is first presented in the submitted paper, as well.

• Using EPwCA and the results of the M-projection with pseudo-likelihoods,

we derive a fixed-interval smoother for state estimation in JMLSs. This work

constitutes the main body of the submitted article.

• We extend the work on the state estimation problem for JMLSs using EPwCA

to the filtering problem by implementing as a fixed-lag smoother.

• We apply the same approach to the target tracking problem under the measure-

ment origin uncertainty and obtain a novel smoother and a filter.

1.2 Outline of the Thesis

The rest of this thesis is structured as follows. Chapter 2 gives an overview of vari-

ational Bayes approaches focusing on EP. The numerical instabilities inherent to the

EP algorithm are discussed, and our improvement to circumvent these issues is pre-

sented. Additionally, the M-projection problem, which assumes that the approximat-

ing functions have the form of pseudo-likelihoods, is solved. This theory is used in the

solutions of the following problems. Chapter 3 addresses the smoothing and filtering
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problems in JMLSs using the proposed method, namely, EPwCA, and investigates in

detail the derived algorithms’ performance by comparing them to their alternatives in

different scenarios. Chapter 4 tackles the target tracking problem under the measure-

ment origin uncertainty in the framework of EPwCA. A fixed-interval smoother and

a filter are derived in this chapter. A discussion on the benefits and shortcomings of

the proposed techniques together with a performance comparison with the existing

methods are presented as well. Chapter 5 concludes this thesis.
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CHAPTER 2

EXPECTATION PROPAGATION WITH CONTEXT ADJUSTMENT

2.1 Introduction

In Bayesian inference, the purpose is to compute the posterior density for the latent

(hidden) variable x given the observation set D. Using the Bayes rule, this posterior

can be written as

p(x | D) =
p(x,D)∫
p(x,D)dx

. (2.1)

The closed-form solution to this problem exists only in limited settings. In fact, the

integral in (2.1) cannot be evaluated in many practical problems. High dimensional

latent space or intractable analytical expressions may cause this problem. Therefore,

it is inevitable to resort to approximate methods.

The approximate methods related to inference problems can be divided into two main

groups: sampling-based methods and variational inference methods. Sampling-based

techniques are called Monte Carlo methods in literature and rely on the idea of gener-

ating random samples in significant amounts from a density to get an approximation

of the integral involving it. Though it works well in any shape of density, it brings a

computational burden and the assessment of convergence is quite difficult [11]. There

exists a vast literature on this approach and it is applied to many different inference

problems [22], [23].

The second type of approximation, variational inference, is at the center of interest in

this thesis, and we will explore it in more detail in the following sections. This chapter

is organized as follows. In Section 2.2, a brief background on variational inference

is given. Then, we overview EP and introduce the idea of context adjustment in
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Section 2.3. Section 2.4 proposes a novel method for M-projection involving pseudo-

likelihoods that is to be used in the solutions to the expectation propagation problems

in the following chapters.

2.2 Variational Inference

The variational inference technique is an analytical approximation method built upon

the calculus of variations. An approximate joint distribution is determined using tools

of this field, which minimizes a divergence measure.

As expressed in (2.1), the marginalization of the joint distribution over the latent

variable hinders the computation of the exact posterior. To simplify the problem, the

posterior is approximated with another distribution as

p(x | D) =
p(x,D)∫
p(x,D)dx

≈ q(x). (2.2)

The simplification can be achieved through this variational distribution, q(x), in two

ways. First, we can assume a specific form of density for q(x). By restricting the fam-

ily of densities q(x) can attain, the computation of the integral can be made tractable.

Second, we may consider a particularly factorized approximate joint distribution so

that a less complex Bayesian network is acquired. This factorization may be in the

form that disjoint groups of latent variables constitute factors, which is known as

mean-field approximation [11]. This approach allows local treatments by easing the

computational burden at the expense of losing the dependence information between

some variables.

Once the form of the approximate distribution is determined, its parameters are com-

puted by minimizing a cost function. Thus, one should also decide on the cost aside

from the assumptions made. Since the purpose is to make the approximate joint den-

sity as close to the true one as possible, the cost will be a functional that is termed

as divergence in statistics. Various divergence measures exist in Bayesian inference

literature [24], and each works well in certain problems. One of the most commonly

used divergences is the reverse (exclusive) Kullback-Leibler (KL) divergence, defined
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as

KL(q(x) ∥ p(x)) =
∫
x

q(x) log
q(x)

p(x)
dx. (2.3)

When p(·) is a Gaussian mixture and q(·) is selected as a Gaussian density, then

minimizing the reverse KL divergence with respect to q(·) will give an optimal q(·)
which is close to the high-probability mode of the mixture, p(·) [25]. A different

version of KL divergence, called forward (inclusive) KL divergence, is

KL (p(x) ∥ q(x)) =
∫
x

p(x) log
p(x)

q(x)
dx, (2.4)

that is in use in many techniques such as EP [16]. In contrast to the reverse one,

given that p(·) is a Gaussian mixture, and q(·) is assumed to be a Gaussian density,

the optimal solution to the minimization of the forward KL divergence with respect

to q(·) is a Gaussian density that matches the moments (mean and covariance) of p(·).
A more general version of these two is called α-divergence, defined by

Dα(p(x) ∥ q(x)) =
∫
x
(αp(x) + (1− α)q(x)− p(x)αq(x)1−α) dx

α(1− α)
. (2.5)

The first two divergences we define also belong to the α-divergence family, where the

first case corresponds to α→ 0, and in the latter one is for α→ 1.

When the reverse KL divergence is utilized, the problem of inferring the posterior

density via the variational Bayes approach turns into the following

min KL (q(x) ∥ p(x | D)) =

∫
q(x) log

q(x)

p(x | D)
dx, (2.6)

where q(x) is factorized as

q(x) =
∏
i

qi(xi), (2.7)

and ∫
qi(xi)dxi = 1 ∀i. (2.8)

Note that KL (q(x) ∥ p(x | D)) = 0, when the approximate distribution, q(x), achieves

the true posterior, p(x | D). The optimal solution for this problem is given as [11]

q∗j (xj) =
exp (Ei ̸=j [ln p(x,D)])∫
exp (Ei ̸=j [ln p(x,D)]) dxj

. (2.9)
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It should be emphasized that the solution for the jth factor depends on the others

through the expectation operation. Hence, the solution is attained by iteratively up-

dating each factor.

Calculating the expectation in (2.9) by hand is a tedious process that is not only time-

consuming but also prone to errors. Especially in large networks, this requires an

exhaustive effort. Winn et al. [26] proposed a message-passing algorithm in the vari-

ational Bayes framework to overcome this problem. The technique known as vari-

ational message passing (VMP) is based on the fact that the variables affecting the

expectation in (2.9) are solely the ones that lie in the Markov blanket [11] of the node

j, and the nodes that are not in the blanket contribute only to the constant term. There-

fore, local manipulations are made possible through message exchange between the

neighboring nodes, i.e., between parent and child nodes. Another approach that em-

ploys a message-passing mechanism is expectation propagation, which is explained

in detail in the following section.

2.3 Expectation Propagation

Expectation propagation (EP) is an approximate variational inference method that

has gathered much attention and applied in various problems [16], [27], e.g., classi-

fication [28], regression [29], reinforcement learning [30]; in communication appli-

cations, e.g., signal detection [31, 32], turbo equalization [33], phase retrieval [34];

and in system identification [35]. It makes use of the forward KL divergence in con-

trast to VMP. The usage of this measure has two consequences. The first one is that

if the approximate distribution is assumed to be in the exponential family, then the

minimization of the forward KL divergence reduces to a simple moment-matching

problem. The other outcome of using this divergence is the necessity of taking ex-

pectation under p(x) which is the reason we apply variational inference techniques in

the first place. The procedure that EP follows to overcome this problem is explained

in this section.

In this framework, suppose that we would like to approximate an intractable target
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distribution p(x) that can be factorized as follows up to a constant.

p(x) ∝
J∏

j=1

pj(x) (2.10)

EP iteratively approximates p(x) with q(x), which is factorized in the same way as

p(x) as follows.

q(x) ∝
J∏

j=1

qj(x), (2.11)

where the factor qj(x) is the approximation of the jth true factor, pj(x). When the

factor qi(x) is to be updated, one first obtains the distribution

q\i(x) ∝
J∏

j=1
j ̸=i

qj(x) ∝
q(x)

qi(x)
. (2.12)

The distribution q\i(x) is called the cavity distribution [36] which represents the con-

text in which the factor qi(x) is to be updated. The next step is to calculate the

so-called tilted distribution [36] q̄i(x) for the ith factor given as

q̄i(x) ∝ pi(x)q\i(x). (2.13)

The ith factor qi(x) is then found by minimizing the (forward) KL divergence from

q(x) to the tilted distribution q̄i(x) as follows.

qnew
i (·) = argmin

qi(·)
KL (q̄i(·) ∥ q(·)) (2.14)

This procedure is repeated by visiting all factors sequentially until convergence.

Although it has been applied successfully in various problems, one drawback of EP

is the absence of a guarantee for convergence [37]. There have been suggestions

to improve convergence properties in the literature. Damping, being one of these

techniques, performs updates using weighted combinations of old and new messages

[38], and double-loop algorithm guarantees to converge to a local minimum of a Bethe

free energy with a slower convergence rate [39].

2.3.1 Idea of Context Adjustment

The minimization in (2.14) is called M-projection, or moment projection, in the

literature [40] and amounts to matching the moments, i.e., the sufficient statistics,
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for distributions from the exponential family. Specifically, the density q(x) obtained

at the end of the minimization is the M-projection of the tilted distribution q̄i(x).

Denoting the M-projection as PM{·} we can write (2.14) as

qnew
i (x) =

PM{q̄i(x)}
q\i(x)

. (2.15)

By using the definition of the tilted distribution q̄i(x) in (2.13) we can obtain

qnew
i (x) =

PM{pi(x)q\i(x)}
q\i(x)

. (2.16)

The division by the cavity distribution q\i(x) above might cause the approximating

factor qi(x) not to be a proper density function, e.g., qi(x) might turn out to be a

scaled-Gaussian term with an indefinite covariance matrix. Having such covariances

is not a problem for inference, per se, as it is only the final approximate distribu-

tion q(x), which should be a proper density function. Nevertheless, such factors can

sometimes cause numerical instabilities that might result in EP having a poor perfor-

mance. One such case was reported in [41, p. 180] for inference in JMLSs, which is

the dynamic system under consideration in this study.1 Hence, it is crucial to have a

structured way to avoid such problems, which was our primary motivation behind the

idea of context adjustment explained below.

In this work, we propose to adjust the effect of the cavity distribution q\i(x) in the

calculation of the ith factor qi(x) as follows.

qnew
i (x) =

PM{pi(x)qγi\i(x)}
qγi\i(x)

, (2.17)

where 0 ≤ γi ≤ 1 is the adjustment exponent. When the exponent is set to unity,

i.e., γi = 1, the update rule (2.17) reduces to the standard EP update rule in (2.16).

By reducing the exponent γi towards zero, one can effectively adjust the effect of the

context represented by the cavity distribution in the update of qi(x). When γi = 0, the

context is completely removed and the ith updated factor becomes the M-projection

of the true factor pi(x). If we assume that the true factor pi(x) is a proper density

function, then we can easily see that there exists a specific adjustment factor value

γ̄i (which can be a positive value if it exists or can be trivially selected as γ̄i = 0)

for which the update (2.17) will yield a proper density function qnew
i (x) for γi ≤ γ̄i

1 We had similar observations in our EP implementations in the early stages of the current work.
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even when the standard EP update in (2.16) will not. In the following parts of this

paper, we will call the usage of the exponents as in (2.17) as context adjustment and

the corresponding expectation propagation algorithm as EP with Context Adjustment

(EPwCA).

2.3.2 Related Ideas in the Literature

The most related idea in the literature to context adjustment is the Power-EP described

in [42] where the following update rule is proposed for the ith factor qi(x).

qnew
i (x) =

(
PM{p1/ηii (x)q\i(x)}

q\i(x)

)ηi

, (2.18)

where ηi ∈ R\{0} is the adjustment exponent. At first glance, the update rule of the

Power-EP might seem to be the same as the context adjustment update rule (2.17)

(with ηi = γi). however, this is not the case since

(
PM{p1/ηii (x)q\i(x)}

)ηi ̸= PM{pi(x)qηi\i(x)} (2.19)

in general.

Another idea related to the powers of the densities in the context of EP is called

damping [36,38], which is the name given to slowing down the EP updates to improve

convergence properties as follows.

qnew
i (x) =

(
qold
i (x)

)(1−δ)
(
PM{pi(x)q\i(x)}

q\i(x)

)δ

, (2.20)

where 0 < δ ≤ 1 is the damping coefficient. Note that damping does not change

the fixed point of the standard EP. Hence, EP and EP with damping would provide

the same results if convergence is achieved for both algorithms. On the other hand,

context adjustment changes the fixed point of the standard EP, as the Power-EP, by

sacrificing the context to some extent to improve the numerical and convergence prop-

erties. It is worth mentioning here that the standard EP with damping might still suffer

from numerical and convergence issues as reported in [41, p. 180] for JMLSs.
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2.4 M-Projection with Pseudo-Likelihoods

In this section, we introduce a solution to the M-projection problem, when the approx-

imating density is in the likelihood form. We will make use of the theory developed

here when solving the expectation problem in the next chapters.

In Bayesian estimation problems, it is common to have factors in the form of a like-

lihood p(y|x) where y is the measurement and x is the unknown quantity to be esti-

mated. The likelihood factors, p(y|x) do not have to be normalizable and hence they

are not proper densities (with respect to x). In this section, we consider M-projection

when the approximating density q(x) contains a likelihood of the form

p(y|x) = N (y;Cx,R) (2.21)

where x ∈ Rdx is the unknown quantity to be estimated, y ∈ Rl is the measurement

where l ≤ dx, C ∈ Rl×dx is the measurement matrix which is assumed to be full row-

rank, and R ∈ Rl×l is the positive-definite measurement noise covariance matrix. the

notation N (x; x̂,P) denotes a Gaussian distribution of the random variable x with

mean x̂ and covariance P.

To the best of our knowledge, the M-projection problem involving such factors has

not been investigated in the literature before. The M-projection problem we consider

is given as

{y∗,C∗,R∗} = arg min
{y,C,R}

KL(p(·)||q(·)), (2.22)

where p(·) is an arbitrary probability density function with mean x̄ and covariance P,

and the density q(x) is defined as

q(x) ∝N (y;Cx,R)N (x; x̂,P), (2.23)

where y ∈ Rℓ, C ∈ Rℓ×dx and R ∈ Rℓ×ℓ with ℓ ≤ dx. We also assume that

C is full row-rank and R is a positive definite matrix. In Appendix A, we show that

analytical solutions for y and R exist, yet they depend on C, for which we cannot find

an analytical solution. Therefore, we seek a sub-optimal solution whose derivation

details are presented in Appendix A and obtain the following expressions.

C∗ =
[
e1 e2 · · · eL

]T
, (2.24a)
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R∗ =diag

(
eT1Pe1
λ1 − 1

, . . . ,
eTLPeL
λL − 1

)
, (2.24b)

y∗ =
[

eT1 (λ1x̄−x̂)

λ1−1
· · · eTL(λLx̄−x̂)

λL−1

]T
, (2.24c)

where {ei, λi} for i = 1, . . . , dx are the eigenvalue-eigenvector pairs that solve the

following generalized eigenvalue problem

Pei = λiPei. (2.25)

2.5 Summary of the Chapter

This chapter reviews the variational Bayes approach and EP, in particular. We discuss

the practical issues in implementing the EP that hinder its application to various prob-

lems. We introduce the idea of context adjustment to mitigate the numerical issues

of EP. For the first time in literature, we derive the analytical sub-optimal solution to

the M-projection that uses likelihood factors. In the following chapters, Chapter 3

and Chapter 4, we will address the state estimation problem in JMLSs and the target

tracking problem under measurement origin uncertainty, respectively, by applying

EPwCA and integrating the pseudo-likelihoods factors into our solutions using the

results of Section 2.4.
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CHAPTER 3

EXPECTATION PROPAGATION WITH CONTEXT ADJUSTMENT FOR

SMOOTHING AND FILTERING OF JUMP MARKOV LINEAR SYSTEMS

3.1 Introduction

Bayesian inference for dynamic systems is usually performed in two stages: time/pre-

diction update and measurement update/correction [3] which requires the knowledge

of state transition density and measurement likelihood, respectively. In some simple

cases, these densities can be derived from the knowledge of state and measurement

models. However, in many practical cases, the state and measurement models are

either not known, or they are uncertain or they change during the operation of the

system, and hence they also need to be estimated along with the state of the sys-

tem. In such cases, it is a common strategy to deal with this model uncertainty by

using a fixed number of alternative state and/or measurement models the system can

switch between during its operation. The dynamic systems switching between differ-

ent modes of operation and hence having switching mathematical models are called

switching dynamical systems . Since the actual (model) switching times of the system

are not known, it is common to mathematically model the system mode as a discrete

random process, usually with Markovian behavior, i.e., as a Markov chain. Switching

dynamical systems whose mode evolves according to a Markov chain are called jump

Markov systems (JMSs). In this paper, we are interested in the smoothing of jump

Markov linear systems (JMLSs).

The Bayesian state estimation of JMSs involves the consideration of alternative mode

histories of the system, which results in posteriors in the form of mixtures. The

optimal Bayesian estimator has to consider all possible mode histories of the sys-
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tem whose number grows exponentially as the time progresses, leading to posterior

mixtures with an intractable number of components to store and process. Conse-

quently, sub-optimal approaches are followed to keep the number of mixture com-

ponents under control while preserving the estimation performances. Although there

exist pruning-based algorithms that reduce mixtures by discarding the mixture com-

ponents with low weights in the literature [43], most of the popular JMS filters are

based on the idea of merging/collapsing mixture components via moment matching.

The second-order generalized pseudo-Bayesian (GPB2) [44] and interacting multiple

model (IMM) [45] filters are widely-utilized merging and moment-matching based

approaches, which keep mixtures with R components as summary statistics at each

time step where R is the number of mode states in the JMS. GPB2 and IMM fil-

ters execute R2 and R filters, respectively, at each time step to update their summary

statistics. Though the IMM filter can be derived as an approximation of the GPB2

filter, it can perform almost equally well in many practical scenarios [4, p. 466].

The difficulties encountered in the filtering of JMSs mentioned above carry over into

the smoothing problem for JMSs. A two-filter formula [46] based fixed interval

smoother was proposed for JMSs in [47]. The main disadvantage of this approach

is that it requires the invertibility of the JMS in time for the backward filter. As a

result, more recent approaches to smoothing of JMSs utilize the Rauch-Tung-Striebel

(RTS) formulae [48] to derive the smoothers [49–53], i.e., after forward filtering, they

run backward smoothers starting from the last filtered estimates. The smoothers pro-

posed in [49], [50] and [51] runR2 smoothers at each time step to updateR smoothed

mixture components in their backward smoothing pass. From the perspective of the

number of smoothers run per time step, these studies can be interpreted as GPB2 type

smoothers. Among these works, the powerful expectation correction approach pro-

posed by Barber in [51] can keep an arbitrary number of mixture components as the

summary statistics at each time step in the backward pass. The most recent works on

fixed-interval smoothing of JMSs were presented in [52] and [53] where IMM type

smoothers running R smoothers at each time step were proposed. In this work, we

propose a fixed interval smoother for jump Markov linear systems based on expecta-

tion propagation which is an approximate variational inference technique [11], [40].

In the literature, there have been few attempts to solve the inference problem in JMSs
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using the EP framework. The approximations on densities employed by EP usually

amount to moment-matching [16,27]. Considering that the dominating filters, namely

GPB2 [44] and IMM [45] filters, for JMSs both utilize moment-matching as opposed

to their, now obsolete, pruning-based alternatives [54, 55], the application of EP to

the problem of smoothing for JMSs would constitute a promising and potentially

significant line of research. In spite of this, there have been few attempts to solve the

inference problem in JMSs using the EP framework in the literature. In [31], Qi and

Minka apply EP to a linear system switching according to a white mode sequence

among multiple measurement models for solving the signal detection problem in flat-

fading channels. Heskes and Zoeter derived an EP smoother for jump Markov linear

systems in [39, 56]. However, it has been reported by Barber in [41, p. 180] that the

EP smoother in [39,56] suffers from significant numerical and convergence problems.

In this chapter, we propose a fixed-interval smoother for JMLSs by incorporating

two major modifications on the standard EP formulation to overcome its numerical

and convergence problems. The first modification we propose is the adjustment of

the context in which the factors are updated so that one avoids indefinite covariances

in EP iterations. The second modification proposed is the change of the backward

factors into Gaussian pseudo-likelihoods, for which the problem of M-projection [40]

is solved for the first time in the literature to the best of the authors’ knowledge.

The rest of the chapter is organized as follows. In Section 3.2, we give the prob-

lem definition. In Section 3.3, the proposed EP smoother is derived. We present

an extension of the proposed solution to the filtering problem in Section 3.4. Sec-

tion 3.5 presents numerical results comparing the proposed smoother with the alter-

native methods on scenarios in which standard EP has numerical and convergence

problems. The chapter is concluded in Section 3.6.

3.2 Problem Definition

We consider a JMLS with the base state at time n denoted as xn ∈ Rdx , n = 0, . . . , N .

The discrete mode state is shown by rn, and it takes values in the set {1 . . . , R} where

R stands for the number of modes. The mode state follows a homogeneous Markov
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chain with the transition probability matrix Π ∈ RR×R = [πj
i ] where πj

i denotes the

probability of going from the ith mode to the jth mode. The observation at time n

is denoted by yn ∈ Rdy , and y0:n is the set of all measurements up to and including

time n.

The JMLS mathematical model considered in this study is given as follows.

xn, rn|xn−1, rn−1 ∼ πrn
rn−1
N (xn;A

rn
n xn−1,Q

rn
n ) , (3.1a)

x0, r0 ∼ πr0
0|−1N (x0; x̂

r0
0|−1,Σ

r0
0|−1), (3.1b)

yn|xn, rn ∼ N (yn;C
rn
n xn,R

rn
n ) , (3.1c)

rn|rn−1 ∼ πrn
rn−1

, (3.1d)

where Arn
n ∈ Rdx×dx is the state transition matrix; Crn

n ∈ Rdy×dx is the measurement

matrix; Qrn
n ∈ Rdx×dx and Rrn

n ∈ Rdy×dy are the positive-definite covariance matrices

of the process noise and the measurement noise, respectively. In general, all of these

matrices depend on the mode state rn. The factor graph corresponding to this model

is given in Fig. 3.1 where the base and mode states are placed in a single node at each

time step. In this work, our purpose is to derive a numerically stable fixed interval

xn-1

n-1r

n-1y

n-1 n-1 n-1p(y |x , r ) n+1 n+1 n+1p(y |x , r )n n np(y |x , r )

n n-1n n-1p(x |x, r , r ) n+1 nn+1 np(x |x, r , r )
xn

nr

ny

xn+1

n+1r

n+1y

Figure 3.1: Factor graph for the exact model.

smoother based on EP for the aforementioned JMLS model to find the approximate

smoothed posterior distributions given as

p(xn, rn | y0:N) =πrn
n|N N (xn;x

rn
n|N ,Σ

rn
n|N), (3.2)

for n = 0, . . . , N .
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3.3 Expectation Propagation with Context Adjustment for Jump Markov Lin-

ear Systems

In order to calculate an approximate smoothed posterior in the form of (3.2), we make

the following approximation

p(xn, rn | xn−1, rn−1) ≈ qfn(xn, rn)q
b
n−1(xn−1, rn−1), (3.3)

where qfn(xn, rn) and qbn(xn, rn) are the forward and backward factors, respectively.

The approximate factor graph is illustrated in Fig. 3.2. The approximate smoothed

xn-1

n-1r

n-1y

n-1 n-1 n-1p(y |x , r ) n+1 n+1 n+1p(y |x , r )n n np(y |x , r )

n
f

nq (x , r ) n
b

nq (x , r )xn

nr

ny

xn+1

n+1r

n+1y

Figure 3.2: The approximate factor graph.

posterior is then given as

qn(xn, rn) ∝ qbn(xn, rn)p(yn | xn, rn)q
f
n(xn, rn). (3.4)

Comparing this factorized approximation with the exact two-filter factorization [46]

given as

p(xn, rn|y0:N) ∝ p(yn+1:N |xn, rn)p(xn, rn|y0:n), (3.5)

we can see that the backward factor, qbn(xn, rn), approximates the likelihood,

p(yn+1:N |xn, rn), while the remaining terms, p(yn|xn, rn)q
f
n(xn, rn), approximate

the filtered posterior, p(xn, rn|y0:n).

3.3.1 Assumed Forms of the Factors

We assume the following scaled exponential form for the forward factor qfn(xn, rn).

qfn(xn, rn) ≜ πf,rn
n exp

(
− 1

2
(xn − µf,rn

n )TΦf,rn
n (·)

)
, (3.6)
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where µf,rn
n ∈ Rdx , Φf,rn

n ∈ Rdx×dx and we denote long quadratic forms xTPx as

xTP(·) for the sake of brevity. The weights πf,rn
n ∈ R≥0, rn = 1, . . . , R, are non-

negative and they satisfy
∑

rn
πf,rn
n = 1. We now define the function ρfn(xn, rn) as

ρfn(xn, rn) ≜
p(yn|xn, rn)q

f
n(xn, rn)∫

xn

∑
rn
p(yn|xn, rn)q

f
n(xn, rn)

, (3.7)

where we assumed that the function p(yn|xn, rn)q
f
n(xn, rn) can be normalized to a

proper density function since it approximates the filtered posterior p(xn, rn|y0:n). A

sufficient condition for p(yn|xn, rn)q
f
n(xn, rn) to be normalizable is given as

Φf,rn
n + (Crn

n )T(Rrn
n )−1Crn

n > 0. (3.8)

When this condition holds, we can write

ρfn(xn, rn) = αf,rn
n N (xn;m

f,rn
n ,Pf,rn

n ), (3.9)

where

αf,rn
n ∝

πf,rn
n

√
|Pf,rn

n |√
|Rrn

n |
exp

(
− 1

2

(
yT
n (R

rn
n )−1yn

+ (µf,rn
n )TΦf,rn

n µf,rn
n

− (mf,rn
n )T(Pf,rn

n )−1mf,rn
n

))
, (3.10a)

mf,rn
n =Pf,rn

n (Φf,rn
n µf,rn

n + (Crn
n )T(Rrn

n )−1yn), (3.10b)

Pf,rn
n =(Φf,rn

n + (Crn
n )T(Rrn

n )−1Crn
n )−1, (3.10c)

with
∑

rn
αf,rn
n = 1 (See Appendix F for a proof of (3.9) and (3.10)). It should be

clear from the expressions above that the triple {αf,rn
n ,mf,rn

n ,Pf,rn
n } can be uniquely

identified from the triple {πf,rn
n ,µf,rn

n ,Φf,rn
n } and vice versa. As a result, the opti-

mization with respect to the factor qfn(xn, rn) can be made equivalently with respect

to ρfn(xn, rn) instead, which is what we are going to do in the following.

Noting once again that the backward factor qbn(xn, rn) approximates the likelihood

p(yn+1:N |xn, rn), the assumed form for qbn(xn, rn) will be a scaled Gaussian pseudo-

likelihood function given as follows.

qbn(xn, rn) ≜ πb,rn
n N

(
yb,rn
n ;Cb,rn

n xn,R
b,rn
n

)
, (3.11)
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where yb,rn
n ∈ Rℓn , Cb,rn

n ∈ Rℓn×dx , and Rb,rn
n ∈ Rℓn×ℓn are the quantities to be

determined by EP. The weights πb,rn
n ∈ R≥0, rn = 1, . . . , R, are non-negative and

they satisfy
∑

rn
πb,rn
n = 1. Note that although we assume that Rb,rn

n > 0, the factor

qbn(xn, rn) above does not have to be a proper density function.

Note that we define the weights πf,rn
n , αf,rn

n and πb,rn
n of the factors qfn(·, ·), ρfn(·, ·) and

qbn(·, ·), respectively, such that they all sum to unity (over rn). Theoretically, such a

restriction is actually not necessary since only the ratios of these weights for different

rn carry information. However, when the weights are not normalized over a long

horizon in a practical implementation, there appears the risk of numerical issues due

to underflow/overflow, which was the reason for us adopting this restriction.

3.3.2 Derivation of the Updates

3.3.2.1 Update of the Forward Factor ρfn(xn, rn)

The expectation propagation problem for the forward factor is

ρf,new
n (·, ·) = arg min

ρfn(·,·)
KL
(
ψ̄f
n(·, ·) ∥ ψf

n(·, ·)
)
, (3.12)

where ψ̄f
n(·, ·) and ψf

n(·, ·) are given as

ψ̄f
n(xn, rn) ∝

[
qbn(xn, rn)

]γf
n
p(yn | xn, rn)

×
∑
rn−1

∫
xn−1

[
p(xn, rn | xn−1, rn−1)

×ρfn−1(xn−1, rn−1)
]
, (3.13a)

ψf
n(xn, rn) ∝

[
qbn(xn, rn)

]γf
n
ρfn(xn, rn), (3.13b)

where the context adjustment is applied on the cavity distribution qbn(xn, rn) with the

adjustment exponent γfn . Note that the terms on the right-hand side of (3.13a) next to

the (adjusted) cavity distribution qbn(xn, rn) represent the filtered posterior p(xn, rn |
y0:n) approximated by replacing p(xn−1, rn−1 | y0:n−1) with ρfn−1(xn−1, rn−1). After

tedious calculations, the densities ψ̄f
n(xn, rn) and ψf

n(xn, rn) turn out to be

ψ̄f
n(xn, rn) ∝ β̄f,rn

n

∑
rn−1

βf,rn
n,rn−1

N (xn;v
f,rn
n,rn−1

,Vf,rn
n,rn−1

), (3.14a)
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ψf
n(xn, rn) ∝ βf,rn

n αf,rn
n N (xn,v

f,rn
n ,Vf,rn

n ), (3.14b)

where the parameters of the densities are derived in Appendix B.1. Note that vf,rn
n and

Vf,rn
n depend on the decision variables mf,rn

n and Pf,rn
n , i.e., the mode-conditioned

mean and covariance appearing in ρfn(xn, rn).

Using the result of Appendix D.2, the optimization problem in (3.12) can be solved

by setting

αf,rn
n ∝ β̄f,rn

n /βf,rn
n , (3.15a)

mf,rn
n =Pf,rn

n

(
(V

f,rn
n )−1v̄f,rn

n

− γfn(Cb,rn
n )T(Rb,rn

n )−1yb,rn
n

)
, (3.15b)

Pf,rn
n =

(
(V

f,rn
n )−1 − γfn(Cb,rn

n )T(Rb,rn
n )−1Cb,rn

n

)−1
, (3.15c)

where

v̄f,rn
n ≜

∑
rn−1

βf,rn
n,rn−1

vf,rn
n,rn−1

, (3.16a)

V
f,rn
n ≜

∑
rn−1

βf,rn
n,rn−1

[
Vf,rn

n,rn−1
+ (vf,rn

n,rn−1
− v̄f,rn

n )(·)T
]
. (3.16b)

3.3.2.2 Update for the Backward Factor qbn(xn, rn)

The expectation propagation problem for the backward factor is

qb,new
n (·, ·) = argmin

qbn(·,·)
KL
(
ψ̄b
n(·, ·) ∥ ψb

n(·, ·)
)
, (3.17)

where ψ̄b
n(·, ·) and ψb

n(·, ·) are given as

ψ̄b
n(xn, rn) ∝

[
ρfn(xn, rn)

]γb
n

×
∑
rn+1

∫
xn+1

[
p(xn+1, rn+1 | xn, rn)

× p(yn+1 | xn+1, rn+1)q
b
n+1 (xn+1, rn+1)

]
, (3.18a)

ψb
n(xn, rn) ∝

[
ρfn(xn, rn)

]γb
n qbn(xn, rn), (3.18b)

where the context adjustment is applied on the cavity distribution ρfn(xn, rn) with the

adjustment exponent γbn. Note that the terms on the right-hand side of (3.18a) next
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to the (adjusted) cavity distribution ρfn(xn, rn) represent the likelihood p(yn+1:N |
xn, rn) approximated by replacing p(yn+2:N | xn+1, rn+1) with qbn+1(xn+1, rn+1). Af-

ter tedious calculations, the density ψ̄b
n(xn, rn) turns out to be

ψ̄b
n(xn, rn) ∝ β̄b,rn

n

∑
rn+1

βb,rn+1
n,rn N (xn;v

b,rn+1
n,rn ,Vb,rn+1

n,rn ), (3.19a)

≈ β̄b,rn
n N (xn, v̄

b,rn
n ,V

b,rn
n ), (3.19b)

where the parameters of the components are derived in Appendix B.2. The mean and

the covariance of ψ̄b
n(xn, rn) are given as

v̄b,rn
n ≜

∑
rn+1

βb,rn+1
n,rn vb,rn+1

n,rn , (3.20a)

V
b,rn
n ≜

∑
rn+1

βb,rn+1
n,rn ,

[
Vb,rn+1

n,rn + (vb,rn+1
n,rn − v̄b,rn

n )(·)T
]
. (3.20b)

The density ψb
n(xn, rn) in (3.18b) is given as follows.

ψb
n(xn, rn) ∝(αf,rn

n )γ
b
nπb,rn

n |Pf,rn
n |

1−γbn
2

×N
(
yb,rn
n ;Cb,rn

n xn,R
b,rn
n

)
N
(
xn;m

f,rn
n ,

Pf,rn
n

γbn

)
(3.21a)

∝ βb,rn
n πb,rn

n N (xn;v
b,rn
n Vb,rn

n ) (3.21b)

where the parameters are derived in Appendix B.2. In order to obtain the unknown

parameters of the pseudo-likelihood, i.e., yb,rn
n , Cb,rn

n , and Rb,rn
n for rn = 1, . . . , R, we

use the results of Appendix A, where we solve the problem of M-projection involving

pseudo likelihood terms. Note that for the weights βb,rn
n to have the same units for

rn = 1, . . . , R, the dimensions ℓrnn of the pseudo-measurements, yb,rn
n , should be the

same for rn = 1, . . . , R, i.e., ℓrnn = ℓn.

The first step for finding yb,rn
n , Cb,rn

n , and Rb,rn
n for rn = 1, . . . , R, is to solve the

following R generalized eigenvalue problems.

Pf,rn
n

γbn
ernn,i = λrnn,iV

b,rn
n ernn,i (3.22)

for rn = 1, . . . , R, i = 1, . . . , dx. Let Lrn
n denote the number of generalized eigen-

values satisfying λrnn,i > 1, i.e., Lrn
n ≜ #

(
{λrnn,i, i = 1, . . . , dx|λrnn,i > 1}

)
, where the

operator #(·) gives the cardinality of the argument set. Set

ℓn ≜ min
rn

Lrn
n . (3.23)
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If ℓn = 0, this means that we cannot solve the optimization problem in (3.17) with

Rb,rn
n > 0 for rn = 1, . . . , R. Hence, in this case, we set

qbn(xn, rn) = 1 (3.24)

for xn ∈ Rdx and rn ∈ {1, . . . , R}. This effectively means that the smoothed esti-

mates at time n turn into filtered estimates and hence we do not allow information

from the future measurements to affect the smoothed estimates before and at the time

n. Note that one can try to avoid this situation to some extent by reducing the context

adjustment exponent γbn.

If ℓn > 0, we find the ℓn generalized eigenvalue-eigenvector pairs, among the ones

belonging to generalized eigenvalues satisfying λrnn,i > 1, maximizing either the gen-

eralized eigenvalues λrnn,i or the following score.1

srnn,i ≜ log λrnn,i +
1

λrnn,i
+ γbn

((ernn,i)
T(mf,rn

n − v̄b,rn
n ))2

(ernn,i)
TPf,rn

n ernn,i
, (3.25)

for rn = 1, . . . , R. Since the eigenvalues with the corresponding eigenvectors can be

ordered arbitrarily, let us denote these eigenvalue-eigenvector pairs as {λrnn,i, e
rn
n,i}

ℓn
i=1

without loss of generality. We then set the unknowns yb,rn
n , Cb,rn

n , and Rb,rn
n as fol-

lows.

yb,rn
n =

[
(ernn,1)

Tṽb,rn
n,1

λrn
n,1−1

· · · (ernn,ℓn
)Tṽb,rn

n,ℓn

λrn
n,ℓn

−1

]T
, (3.26a)

Cb,rn
n =

[
ernn,1 ernn,2 · · · ernn,ℓn

]T
, (3.26b)

Rb,rn
n =diag

(
(ernn,1)

TPf,rn
n ernn,1

γbn(λ
rn
n,1 − 1)

, . . . ,
(ernn,ℓn)

TPf,rn
n ernn,ℓn

γbn(λ
rn
n,ℓn
− 1)

)
. (3.26c)

for rn = 1, . . . , R, where

ṽb,rn
n,i ≜ λrnn,iv̄

b,rn
n −mf,rn

n . (3.27)

As the final step of the update, we set

πb,rn
n ∝ β̄b,rn

n /βb,rn
n (3.28)

for rn = 1, . . . , R.
1 We have not seen a significant distinction between maximizing the generalized eigenvalues λrn

n,i or the score
in the simulations conducted in this work. Hence, in the following parts, we only present the results which were
obtained by maximizing the generalized eigenvalues.
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3.3.2.3 Computing the Final State Estimates

The approximate smoothed distribution qn(xn, rn) in (3.4) when n < N is given as

qn(xn, rn) =
qbn(xn, rn)ρ

f
n(xn, rn)∫

xn

∑
rn
qbn(xn, rn)ρ

f
n(xn, rn)

(3.29a)

=πrn
n|N N (xn;x

rn
n|N ,Σ

rn
n|N), (3.29b)

where

πrn
n|N ∝α

f,rn
n πb,rn

n N (yb,rn
n ;Cb,rn

n mf,rn
n ,Srn

n ), (3.30a)

xrn
n|N =Σrn

n|N
(
(Pf,rn

n )−1mf,rn
n

+ (Cb,rn
n )T(Rb,rn

n )−1yb,rn
n

)
, (3.30b)

Σrn
n|N =

(
(Pf,rn

n )−1 + (Cb,rn
n )T(Rb,rn

n )−1Cb,rn
n

)−1
, (3.30c)

for rn = 1, . . . , R, where

Srn
n ≜Cb,rn

n Pf,rn
n (Cb,rn

n )T +Rb,rn
n , (3.31)

for rn = 1, . . . , R. Since there is no backward factor at time n = N , we have

qN(xN , rN) = ρfN(xN , rN) yielding,

πrN
N |N ∝α

f,rN
N , xrN

N |N =mf,rN
N , ΣrN

N |N =Pf,rN
N , (3.32)

for rN = 1, . . . , R.

3.3.3 Selection of the Adjustment Exponents

3.3.3.1 Selection of γfn

We propose the selection of the forward adjustment exponent, γfn , in the EP iteration

as follows. We initialize all of the exponents at unity, i.e., γfn = 1, n = 1, . . . , N − 1,

after the initialization of the factors ρfn(·, ·), n = 1, . . . , N . Suppose that, at some

iteration of EPwCA, we would like to update the (parameters of the) forward factor

ρfn(·, ·) as described in Section 3.3.2.1. We then perform the covariance subtraction

in (3.15c) to calculate the matrix

(Pf,rn
n )−1 = (V

f,rn
n )−1 − γfn(Cb,rn

n )T(Rb,rn
n )−1Cb,rn

n , (3.33)

27



for all of the modes rn ∈ {1, . . . , R}. If the matrices (Pf,rn
n )−1, rn = 1, . . . , R, satisfy

both of the conditions

min eig(Pf,rn
n )−1 ≥ ϵ1, (3.34a)

min eigV
f,rn
n (Pf,rn

n )−1 ≥ ϵ2, (3.34b)

for rn = 1, . . . , R, where ϵ1 > 0 and ϵ2 ≥ 0 are thresholds to be selected, then we

keep the value of γfn the same. Otherwise, i.e., if at least one of the matrices (Pf,rn
n )−1,

rn = 1, . . . , R, violate either of the conditions (3.34), then we reduce the exponent

γfn as follows.

γfn ← max{0, γfn −∆γf}, (3.35)

where 0 < ∆γf ≤ 1 is a predefined constant exponent decrement. After this expo-

nent reduction, we repeat the update of ρfn(·, ·) for all of the modes rn = 1, . . . , R.

The condition in (3.34a) guarantees the positive definiteness and the invertibility of

the matrix (Pf,rn
n )−1 and the design threshold ϵ1 should be selected such that in-

verse of the matrix (Pf,rn
n )−1 can be found without any numerical problems. The

condition (3.34b) ensures that the information after the subtraction (represented by

(Pf,rn
n )−1) remains above a predefined percentage of the initial information (repre-

sented by (V
f,rn
n )−1). Selecting e.g., ϵ2 = 0.01 ensures that the information after the

subtraction is always going to remain above 1% of the initial information (represented

by (V
f,rn
n )−1). Note that selecting ϵ2 = 0 effectively removes this condition.

The exponent reduction can be applied multiple times if the matrices (Pf,rn
n )−1, rn =

1, . . . , R continue to violate the conditions (3.34). With the reduction rule above, the

minimum value of γfn is zero at which both of the conditions (3.34) are guaranteed

to be satisfied for rn = 1, . . . , R. Note that one can choose the exponent decrement

∆γf as a function of discrete-time n if there is a need to do so.

3.3.3.2 Selection of γbn

Note that the update procedure for (the parameters of) the backward factor qbn(·, ·)
described in Section 3.3.2.2 works for any value of 0 < γbn ≤ 1. However, it is

possible that the dimension ℓn of the pseudo-measurement yb,rn
n , rn ∈ {1, . . . , R}
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turns out to be zero, i.e., no information is transferred from the future measurements

to time n, which effectively resets the smoothing process at time n. By reducing

the value of the adjustment exponent, γbn, one can try to avoid this problem to some

extent. However, setting γbn to a value too close to zero might significantly increase

the state covariances’ condition number, leading to numerical problems. In this work,

we set γbn = 1, n = 0, . . . , N − 1, in all of the simulations.

3.3.4 Pseudo-Code of the Algorithm

We initialize the EPwCA factors as follows. Note that the parameters of the first

forward factor ρf0(x0, r0) can be found by updating the initial distribution p(x0, r0)

with the measurement y0 as

αf,r0
0 ∝ πr0

0|−1N (y0;C
r0
0 ,S

r0
0 ), (3.36a)

mf,r0
0 =Pf,r0

0 ((Σr0
0|−1)

−1xr0
0|−1 + (Cr0

0 )T(Rr0
0 )−1y0), (3.36b)

Pf,r0
0 =((Σr0

0|−1)
−1 + (Cr0

0 )T(Rr0
0 )−1Cr0

0 )−1, (3.36c)

for r0 = 1, . . . , R, where

Sr0
0 ≜ Cr0

0 Σr0
0|−1(C

r0
0 )T +Rr0

0 (3.37)

for r0 = 1, . . . , R. After initializing the first forward factor ρf0(x0, r0) like this, it is

possible to initialize the forward factors by making a forward pass to calculate ρfn(·, ·),
n = 1, . . . , N , after setting γfn = 0, n = 1, . . . , N . Note that this first forward pass

without the effects of the backward factors (since we have γfn = 0) is equivalent to

GPB2 filter [44]. We can then initialize the backward factors by making a backward

pass after setting γbn = 1, n = 1, . . . , N , and qbN(xN , rN) = 1 for rN = 1, . . . , R.

After this initialization, the factors of EPwCA can be updated in any order one likes

until a convergence criterion is satisfied. We observed in our experiments that con-

secutive forward and backward passes similar to an RTS smoother [48] would yield

satisfactory results. A pseudo-code of the proposed update mechanism can be found

in Algorithm 1. The proposed algorithm uses the forward and backward factor up-

dates given in Algorithm 2 and Algorithm 3, respectively, which utilize the corre-

sponding adjustment exponent update mechanisms described in Section 3.3.3. The
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iterations in Algorithm 1 stop, i.e., the algorithm is assumed to have converged, if the

root-mean-square value (over the smoothing interval) of the differences between the

smoothed state estimates in consecutive iterations becomes lower than or equal to the

user-defined threshold Γconv or the number of iterations goes above Jmax, which is the

maximum number of iterations allowed.

In the forward pass of Algorithm 1, we have also added damping after the forward fac-

tor update with the damping coefficient δ. Letting the old and the updated nth forward

factor statistics be denoted as {ᾱf,rn
n , m̄f,rn

n ,P
f,rn
n }Rrn=1 and {αf,rn

n ,mf,rn
n ,Pf,rn

n }Rrn=1,

respectively, the damping procedure described by (2.20) is given as follows.

α̃f,rn
n ∝(ᾱf,rn

n )1−δ(αf,rn
n )δ|Pf,rn

n |
δ
2 |Pf,rn

n |
1−δ
2

×N
(
m̄f,rn

n ;mf,rn
n ,

P
f,rn
n

1− δ
+

Pf,rn
n

δ

)
(3.38a)

P̃
f,rn

n =
(
(1− δ)Pf,rn

n )−1 + δ(Pf,rn
n )−1

)−1 (3.38b)

m̃f,rn
n =P̃

f,rn

n

(
(1− δ)Pf,rn

n )−1m̄f,rn
n + δ(Pf,rn

n )−1mf,rn
n

)
(3.38c)

for rn = 1, . . . , R.

Algorithm 1 Pseudo Code for EPwCA Smoother

Input: {πr
0|−1,x

r
0|−1,Σ

r
0|−1}Rr=1; {yn}Nn=0; Γconv; Jmax; δ.

Output: {πr
n|N ,x

r
n|N ,Σ

r
n|N}Rr=1 for n = 1, . . . , N .

1: γfn = 0, n = 1, . . . , N .

2: Calculate {αf,r
0 ,mf,r

0 ,Pf,r
0 }Rr=1.

3: for n = 1 : N do

4: Run Alg. 2 to get {αf,r
n ,mf,r

n ,Pf,r
n }Rr=1.

5: end for

6: γfn = 1, n = 1, . . . , N − 1.

7: γbn = 1, n = 0, . . . , N − 1.

8: for n = N − 1 : −1 : 1 do

9: Run Alg. 3 to get {πb,r
n ,yb,r

n ,Cb,r
n ,Rb,r

n }Rr=1.

10: end for

11: Find the final estimates {πr
n|N ,x

r
n|N ,Σ

r
n|N}Rr=1 for n = 0, . . . , N .

12: j = 1

13: econv =∞
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14: while econv > Γconv & j ≤ Jmax do

15: xr,old
n|N = xr

n|N , r = 1, . . . , R; n = 0, . . . , N .

16: for n = 1 : N do

17: if δ < 1 then ▷ Damping is applied

18: Save {αf,r
n ,mf,r

n ,Pf,r
n }Rr=1 as

{ᾱf,r
n , m̄f,r

n ,P
f,r

n }Rr=1

19: end if

20: Run Alg. 2 to get {αf,r
n ,mf,r

n ,Pf,r
n }Rr=1.

21: if δ < 1 then ▷ Damping is applied

22: Calculate {α̃f,r
n , m̃f,r

n , P̃
f,r

n }Rr=1 using (3.38).

23: Set {αf,r
n ,mf,r

n ,Pf,r
n }Rr=1 to

{α̃f,r
n , m̃f,r

n , P̃
f,r

n }Rr=1

24: end if

25: end for

26: for n = N − 1 : −1 : 1 do

27: Run Alg. 3 to get {πb,r
n ,yb,r

n ,Cb,r
n ,Rb,r

n }Rr=1.

28: end for

29: Find the final estimates {πr
n|N ,x

r
n|N ,Σ

r
n|N}Rr=1 for

n = 0, . . . , N .

30: econv =
(

1
dxN

∑N
n=0

∑R
r=1 ∥x

r,old
n|N − xr

n|N∥2)0.5

31: j ← j + 1

32: end while

Algorithm 2 Pseudo Code for Forward Factor Update

Input: γfn , ∆γf , ϵ1, ϵ2.

Input: {αf,r
n−1,m

f,r
n−1,P

f,r
n−1}Rr=1, yn.

Input: {πb,r
n ,yb,r

n ,Cb,r
n ,Rb,r

n }Rr=1. ▷ If γfn ̸= 0

Output: {αf,r
n ,mf,r

n ,Pf,r
n }Rr=1,γfn .

1: gammaReductionFlag = 1

2: while gammaReductionFlag = 1 do

3: gammaReductionFlag = 0

4: for r = 1 : R do

5: Calculate β̄f,r
n , v̄f,r

n ,V
f,r

n .
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6: Calculate mf,r
n ,Pf,r

n .

7: Calculate unnormalized αf,r
n .

8: if min eig (Pf,r
n )−1 ≤ ϵ1 or

9: min eig V
f,r

n (Pf,r
n )−1 ≤ ϵ2 then

10: gammaReductionFlag = 1

11: end if

12: end for

13: Normalize αf,r
n , r = 1, . . . , R.

14: if gammaReductionFlag = 1 then

15: γfn ← max{0, γfn −∆γf}
16: end if

17: end while

Algorithm 3 Pseudo Code for Backward Factor Update

Input: γbn, ϵ3.

Input: {αf,r
n ,mf,r

n ,Pf,r
n }Rr=1, yn+1.

Input: {πb,r
n+1,y

b,r
n+1,C

b,r
n+1,R

b,r
n+1}Rr=1. ▷ If n ≤ N − 2

Output: {πb,r
n ,yb,r

n ,Cb,r
n ,Rb,r

n }Rr=1.

1: for r = 1 : R do

2: Calculate β̄b,r
n , v̄b,r

n ,V
b,r

n .

3: Solve the generalized eigenvalue problem

Pf,r
n

γbn
ern,i = λrn,iV

b,r

n ern,i

4: Order the generalized eigenvalue-eigenvector pairs in

decreasing generalized eigenvalue order.

5: Lr
n = #

(
{λrn,i, i = 1, . . . , dx|λrn,i > 1 + ϵ3}

)
6: end for

7: ℓn = minr L
r
n

8: for r = 1 : R do

9: Choose the first ℓn generalized eigenvalue-eigenvector

pairs for the rth mode.

10: Calculate yb,r
n ,Cb,r

n ,Rb,r
n .

11: Calculate unnormalized πb,r
n .
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12: end for

13: Normalize πb,r
n , r = 1, . . . , R.

3.3.5 Computational Complexity

The computational complexity of EPwCA can be investigated by calculating the com-

putational complexity of its three sub-blocks: forward factor update, backward factor

update and smoothed posterior distribution calculation, whose computational com-

plexities are denoted as F , B, and E, respectively. Once we know F , B, and E, the

overall computational complexity of EPwCA is O(JmaxN(F +B + E)).

The computational complexity of a forward factor update is dominated byR2 Kalman

filters (having the measurement update in information form) with computational com-

plexity of O(d3x), which might have to be executed at most 1/∆γf times. There-

fore, the computational load of a single forward pass is F = O(R2d3x/∆γ
f ). The

computational complexity of a backward factor update is dominated by R2 Kalman

smoothers (in information form) with computational complexity of O(d3x). Note that

R generalized eigenvalue problems (with Hermitian matrices) and R naive sorting

algorithms have the computational complexities O(Rd3x) and O(Rd2x), respectively,

which are both below O(R2d3x). Hence, we have B = O(R2d3x). The computational

complexity of calculating a smoothed posterior distribution involves R Kalman filter

measurement updates (in information form). As a result, we have E = O(Rd3x).

3.4 Extension to Filtering Problem

We tackle the problem of filtering with EPwCA by implementing a fixed-lag form of

the smoother and recording the estimate at the last instant in the moving window as

the filtered output.

To clarify this approach, we resort to the example illustrated in Fig. 3.3, where the

window size is selected as τ = 4. In order to obtain the filtered estimate at time n,

we apply EPwCA on the window that extends from n− 3 to n, which is indicated by

the blue box. By running EPwCA on this interval, the estimate at time n is regarded
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as the filtering output, whereas the estimates corresponding to the remaining instants

in the interval are the smoothed ones. Hence, the green circles denote the filtered

estimates, and the yellow boxes cover the fixed-lag smoothing outcomes.

n n+1 n+2n-1n-2n-3

(n-3)rd run

(n-2)nd run

(n-1)st run

Figure 3.3: Filtering with EP when the window size is 4.

3.4.1 Pseudo Code of the Filtering Algorithm

Algorithm 4 Pseudo Code for EPwCA Filter

Input: {πr
0|−1,x

r
0|−1,Σ

r
0|−1}Rr=1; {yn}Nn=0; τ ; Γconv; Jmax; δ.

Output: {πr
n|n,x

r
n|n,Σ

r
n|n}Rr=1 for n = 1, . . . , N .

1: γfn = 0, n = 1, . . . , N .

2: for n = 1 : N do

3: Run Alg. 1 using {yj}nj=i to get {πr
j|n,x

r
j|n,Σ

r
j|n}Rr=1 for i = max(1, n− τ).

4: Save {πr
n|n,x

r
n|n,Σ

r
n|n}Rr=1 as the filter output.

5: Use {αf,r
i+1,m

f,r
i+1,P

f,r
i+1}Rr=1 to initialize the Alg. 2 in the next run.

6: end for

3.5 Simulation Results

3.5.1 Test Scenarios

The proposed EPwCA smoother and filter are tested on three different scenarios,

which are detailed below.
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3.5.1.1 Model-Match Scenario

In this scenario we consider a target with the state vector xn ≜ [px
n p

y
n v

x
n v

y
n]

T, n =

0, . . . , 100, which is composed of 2D position and velocity of the target. The target

moves according to a JMLS composed ofR = 2 nearly constant velocity models with

different process noise standard deviations. The JMLS parameters are given as

A1 =A2 =

 1 T

0 1

⊗ I2, (3.39a)

Qr =(σr
w)

2

 T 3/3 T 2/2

T 2/2 T

⊗ I2, r = 1, 2, (3.39b)

C1 =C2 =
[
I2 02

]
, (3.39c)

R1 =R2 = σ2
vI2, (3.39d)

where T = 1 s, σ1
w = 0.1m/s1.5, σ2

w = 10m/s1.5, σv = 10m2. The parameters of the

initial distribution p(x0, r0) are set to be πr0
0|−1 = 0.5 and

x̂r0
0|−1 = [0 0 100 100]T , Σr0

0|−1 =1002I4, (3.40)

for r0 = 1, 2. The transition probability matrix Π is set such that π1
1 = π2

2 = 0.9.

The smoothing algorithms use the same JMLS model as the one given above. Hence

we have a complete model-match between the smoother models and the true target

motion, hence the name model-match scenario.

3.5.1.2 Model-Mismatch Scenario

In this scenario our aim is to examine the performance of the proposed smoother on

a more realistic set of target trajectories than those used in the model-match case.

For this purpose, we consider a target with the same state xn, n = 0, . . . , 150, as

the one in the model-match scenario. The target first moves with constant veloc-

ity for 50 seconds, then makes a coordinated turn for 50 seconds with a randomly

selected turn-rate and then finishes its trajectory by moving again with constant ve-

locity for 50 seconds. The turn-rate of the target is distributed uniformly over the
2 The covariance matrix Qr in (3.39b) of the process noise is obtained by the discretization of the continuous-

time nearly constant velocity model [4, p. 270], [57, eq. (15)]
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Figure 3.4: Ten sample trajectories the target can follow in the model-mismatch sce-

nario. The trajectories correspond to 10 turn-rates uniformly spaced in the interval

[−π/50, π/50] rad/s. The magenta dot shows the start of the target trajectories.

interval [−π/50, π/50] rad/s. Ten sample trajectories, corresponding to 10 turn-rates

uniformly spaced over the interval [−π/50, π/50] rad/s, the target can follow are

shown in Fig. 3.4. The JMLS model used in the smoothers is the same as the one

in the model-match scenario except that the initial mode-conditioned state estimates

are selected as x̂r0
0|−1 = [1000 1000 100 100]T for r0 = 1, 2. As a result, there is a

significant mismatch between the true target motion and the motion model (i.e., the

parameters Ar, Qr, r = 1, 2) used in the smoothers, hence the name model-mismatch

scenario.

3.5.1.3 Barber’s Scenario

This scenario is taken from [51], where Barber calls it the hard problem. In this sce-

nario, the state vector xn ∈ Rdx , n = 0, . . . , 100, is observed via scalar observations

at each time instant, i.e., dy = 1. There are two modes, i.e., R = 2, with the transition
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probability matrix Π set such that π1
1 = π2

2 = 2/3. 3 The JMLS parameters are given

as

Ar =0.9999× orth(randn(dx)), Qr =σ2
wIdx , (3.41a)

Cr =randn(dy, dx), Rr =σ2
vIny , (3.41b)

for r = 1, 2, where randn(·) is the Matlab command creating a matrix of random

samples generated from a standard normal distribution (with the desired size), and the

Matlab command orth(·) generates an orthonormal basis for the range space of the

argument matrix. The parameters in (3.41) are selected as dx = 30, σw = 0.1, σv =
√
30. The parameters of the initial distribution p(x0, r0) are set as πr0

0|−1 = 0.5 and

x̂r0
0|−1 =10× randn(dx, 1), Σr0

0|−1 = Idx , (3.42)

for r0 = 1, 2. The smoothers use the same model as the one given above.

3.5.2 Results

3.5.2.1 Results for the Smoothing Algorithms

We implemented the following smoothers for performance comparison:

• Lopez & Danes [53]: The smoothing algorithm proposed by Lopez &

Danes [53].

• Barber [41]: The expectation correction (EC) smoother proposed by Barber

in [41, 51]. We present two sets of results of the EC smoother, denoted as

Barber-I and Barber-II, obtained when it keeps R (one component for each

mode) and 2R (2 components for each mode) component mixtures for the

smoothed posterior at each time step.

• Nadarajah et al. [52]: The smoothing algorithm proposed by Nadarajah et

al. [52].
3 Barber selects π1

1 = π2
2 = 0.5 for the hard scenario in [51]. However, such a selection makes the Markov

chain white, i.e., the Markov chain turns into a memoryless (i.i.d.) sequence of Bernoulli random variables, which
we did not want. Making the selection π1

1 = π2
2 = 2/3 instead has been observed to cause only minor changes in

the results to be presented while preserving some weak memory.
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• EPwCAS: The proposed smoother in this work with the parameters Jmax = 50,

Γconv = 10−4, ϵ1 = 10−10, ϵ2 = 10−2, ϵ3 = 10−6, ∆γf = 10−1. Note that

standard EP had numerical and convergence problems in all three scenarios

above, and hence we are not able to present its results in this work.

We conducted 500 Monte Carlo runs for each scenario. The performance of the al-

ternative methods is assessed using the root-mean-square (RMS) and median errors.

Additionally, we define a new metric which is the ratio of correct decisions made by

a smoother to the total number of decisions made. We refer to this ratio as mode ac-

curacy in this study. The mode with the highest mode probability at each time instant

is considered to be the mode decided at that instant.

In the results of the model-match scenario depicted in Figs. 3.5a and 3.5b, EPwCAS

exhibits the best performance among all smoothers by beating Lopez & Danes by a

slight margin. In the results for the model-mismatch scenario shown in Figs. 3.5c

and 3.5d, when the target moves with constant velocity, EPwCAS obtains the second-

best results after Barber-II. On the other hand, Lopez & Danes has marginally lower

RMS and median position errors than EPwCAS when the target maneuvers. Note

that the results for all methods, especially those for velocity estimation, are very sim-

ilar during the maneuver. Barber-I and Nadarajah et al. demonstrate unexpectedly

poor performance during the non-maneuvering parts of the scenario. The results for

the Barber’s scenario shown in Figs. 3.5e and 3.5f reveal the superiority of EPwCAS

over Lopez & Danes and Barber-I quite clearly. The RMS errors of EPwCASEP-

wCA smoother are nearly half of those methods. Since Barber-II keeps two mixture

components for each mode, unlike the other smoothers, it can achieve much lower

RMS errors than the other methods. Nevertheless, the median errors of EPwCAS are

the same as those of Barber-II. Aligned with the error values, the mode accuracies

in Table 3.1 suggests that EPwCAS reaches the highest accuracy value among all

the smoothers in the first two scenarios and falls behind only Barber-II which stores

more mixture components. Overall, EPwCAS can be said to have similar or better

performance compared to the smoother, which keeps the same summary statistics in

the literature.
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Table 3.1: The mode accuracies of the smoothers.

Model-match Model-mismatch Barber’s

Lopez & Danes 0.81 0.89 0.67

Barber-I 0.82 0.90 0.82

Barber-II 0.83 0.91 0.99

Nadarajah et al. 0.75 0.82 0.54

EPwCAS 0.85 0.92 0.96

3.5.2.2 Results for the Filtering Algorithms

To compare the filtering performance of EPwCA, we have implemented three alter-

native methods,

• GPB2 [44]: A well-known filter that runs R2 Kalman filter storing R2 number

of hypotheses before merging.

• IMM [45]: It is the de facto filter for JMS. By incorporating a mixing procedure

at each cycle, the number of Kalman filters and the number of hypotheses stored

are kept at R.

• Ma et al. [58]: A filter that approximates the joint distribution of the mode

and base state by variational Bayes inference.

• EPwCAF: The proposed filter that uses the following parameter set: Jmax = 2,

Γconv = 10−2, ϵ1 = 10−10, ϵ2 = 10−2, ϵ3 = 10−6, ∆γf = 10−1. The window

size of the EPwCAF is set to 3. We apply no damping in model-match and

model-mismatch scenarios, while for Barber’s scenario, damping is carried out

with a damping coefficient of δ = 0.5.

In the model-match scenario, our algorithm performs slightly better than its alterna-

tives in both position and velocity RMS and median errors, as shown in Fig. 3.6a

and 3.6b. When the target follows the nearly-constant velocity model in the model-

mismatch scenario, the advantage of EPwCA as a filter becomes more distinguishable

in Fig. 3.6c and 3.6d. Although the differences between position RMS and velocity
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Table 3.2: The mode accuracies of the filters.

Model-match Model-Mismatch Barber’s

IMM 0.68 0.83 0.64

GPB2 0.69 0.85 0.84

Ma et al. 0.64 0.76 0.56

EPwCAF 0.75 0.85 0.91

errors of the IMM, GPB2, and EPwCAF are almost similar in the interval of maneu-

vering, the overall improvement provided by EPwCAF is much greater. On the other

hand, though Ma et al. attains the lowest errors in terms of velocity, it falls short in

estimating the position. The results for Barber’s scenario in Fig. 3.6e and 3.6f draw

a similar picture to the smoothing performance of EPwCA, that is, the EPwCAF sur-

passes the others in the filtering problem, as well. In all scenarios, the errors at the last

time instant increase due to the absence of a backward factor, which, in fact, makes

the smoothed estimates turn into filtered ones.

Only in the Barber’s scenario, EPwCAF appears to perform better than EPwCAS,

which is due to errors propagating in the backward direction in the backward pass,

especially when an incorrect mode decision is made.

The mode accuracies of the filters are given in Table 3.2 for each scenario. EPw-

CAF attains the best accuracy values in all cases. Especially in Barber’s scenario, it

outperforms the others.

3.6 Conclusion

Fixed-interval smoothing and filtering problems for JMLSs have been studied in an

EP framework. Numerical studies have shown that EPwCA and pseudo-likelihood

backward factors improve poor numerical and convergence properties of EP for

JMLSs reported in the literature. The proposed smoother and the filter demonstrate

similar or better performance compared to their alternatives.
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(a) RMS errors for model-match scenario. (b) Median errors for model-match scenario.

(c) RMS errors for model-mismatch scenario. (d) Median errors for model-mismatch scenario.

(e) RMS errors for Barber’s scenario. (f) Median errors for Barber’s scenario.

Figure 3.5: The smoother errors for different scenarios. The figures on the left and

right indicate the RMS and the median error curves, respectively.
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(a) RMS errors for model-match scenario. (b) Median errors for model-match scenario.

(c) RMS errors for model-mismatch scenario. (d) Median errors for model-mismatch scenario.

(e) RMS errors for Barber’s scenario. (f) Median errors for Barber’s scenario.

Figure 3.6: The filter errors for different scenarios. The figures on the left and right

indicate the RMS and the median error curves, respectively.
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CHAPTER 4

EXPECTATION PROPAGATION WITH CONTEXT ADJUSTMENT FOR

TARGET TRACKING UNDER MEASUREMENT ORIGIN UNCERTAINTY

4.1 Introduction

Target tracking refers to the act of inferring the kinematic properties of targets by

processing noisy measurements received from sensors. In real-life problems, mostly

there are multiple targets to be tracked, and sensors provide a batch of noisy mea-

surements in a single scan that contain no information about their origin. This mea-

surement batch includes clutter as well, which is spurious measurements due to false

alarms and/or reflections from other objects that are out of interest, in addition to the

target-originated measurements. It is also highly likely that a measurement belonging

to a target is missing due to misdetection.

The target tracking literature [5], [59] is predominantly based on the Bayesian infer-

ence methods [3]. A general Bayesian recursion that is to be used to estimate the state

of a target would be composed of two stages: prediction update and measurement up-

date. In the latter, the predicted density is updated with one or multiple measurements

generated by the target of interest. Thus, to be able to apply Bayesian inference tech-

niques to the target tracking problems, it is crucial to resolve the measurement origin

uncertainty. This problem of identifying the source of measurements and associating

them to the targets of interest is referred to as the data association problem in the

literature [5], [59]. In this context, an association hypothesis is an assignment from

targets to measurements. In an optimal Bayesian solution, we must consider all pos-

sible assignment hypotheses for all time scans. This is a challenging effort because

even in a single target tracking case, the number of association hypotheses increases
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exponentially in time according to (M +1)n, where M is the number of observations

at a scan, and n is the time index. We also note that this number grows even faster in

the multi-target case. Therefore, the optimal Bayesian solution for the data associa-

tion problem is intractable, and we resort to other approaches that yield approximate,

sub-optimal solutions.

The data association problem has been examined in depth over the years, and there

exist numerous filters in the literature, which handle this problem in different ways.

The nearest neighbor approach [5], [4] is a simple method that chooses the measure-

ment closest to the predicted measurement for each target in a probabilistic sense.

Therefore, it makes a hard decision. The global nearest neighbor (GNN) [5], [4] be-

ing its extension to the multi-target tracking case, selects the hypothesis among all

others that yields the highest probability. Another method is the probabilistic data

association (PDA) [60] which is a soft decision mechanism. In PDA, there is only

one target, and all association hypotheses are weighted out with their probability of

association to form an equivalent measurement. Then, the predicted state of the target

is updated by using the equivalent measurement. Hence, the PDA algorithm makes

use of all the measurements. Its MTT variant, namely, joint probabilistic data asso-

ciation (JPDA) [61], forms the hypotheses considering the existence of other targets

in addition to the measurements. A well-known technique applied for MTT is multi-

hypotheses tracking (MHT) [62]. With this approach, a subset of hypotheses is kept

at each scan, and observations at the following scans are hoped to resolve the data

association problem. However, as time progresses, this results in a combinatorial in-

crease in the number of hypotheses. In order to control the growth of this number, a

couple of techniques such as pruning, clustering, and merging are applied.

The smoother studies on data association are more limited in the literature. A popular

smoothing algorithm is probabilistic multi-hypothesis tracking (PMHT) [63]. In this

approach, assuming that the number of objects is fixed and known, associating more

than one measurement is allowed to a single target (at each time instant), leading to

a soft association. The solution is achieved by making use of expectation maximiza-

tion (EM) [64] and RTS smoother formulae [65]. As addressed by the authors of the

original PMHT paper in [66], this method has the problems of non-adaptivity, narcis-

sism, and hospitality to clutters, in addition to some implementation issues. There are
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many versions of PMHT in the literature that aim at alleviating these issues [66] and

extend this approach to other problems [67], [68]. In contrast to PMHT, the smoother

proposed in [69] abides by the point target model where a target can generate at most

one measurement, and each measurement can belong to only one target at a time in-

stant. In this work, Rahmathullah et al. utilize loopy-belief propagation (LBP) [15]

and EM to compute association probabilities and the state estimates of the objects,

and perform RTS smoother to obtain the smoothed posteriors. As the algorithm suf-

fers from initialization issues, they suggest incorporating deterministic annealing [70]

and homotopy methods [71], as well. To our knowledge, there has been no attempt

to solve the data association problem using EP up till now. In this thesis, we will

derive smoother equations for data association under clutter for MTT based on EP.

Specifically, we will use the proposed EPwCA approach that yields a numerically

stable algorithm. Moreover, we will implement it as a fixed-lag smoother to achieve

filtering results and examine its performance as a filter.

This chapter is structured as follows. The problem definition is given in Section 4.2.

Then, we derive the smoother equation of EPwCA smoother in Section 4.3 and de-

scribe how it can be utilized as a filter in Section 4.4. In Section 4.5, we illustrate the

simulation results, and this chapter is concluded in Section 4.6.

4.2 Problem Definition

We consider a data association problem where the number of objects, denoted by

K, is fixed and known1, i.e., no object spawns or dies throughout the scenario. The

base state of the kth object at time n is shown by xk
n ∈ Rdx , whose prior distribution

is p(xk
0) = N (xk

0;x
k
0|−1,Σ

k
0|−1). At each time, we receive a set of measurements

whose sources are unknown. This set, defined as Yn = {y1
n,y

2
n, . . . ,y

mn
n } at time n

where mn is the number of measurements, is a collection of clutter, false alarm, and

possibly the true measurements that originate from the objects of interest. To describe

an association hypothesis, we define a discrete association vector, rn ∈ RK . That is,

1 In target tracking literature, it is a common practice to assume that the number of objects is fixed and
known [59], [5], as estimating it is a challenging problem. Under this assumption, most of the filters employ
track maintenance mechanisms so that the number of targets is revealed to the filter. In smoothing problems, this
assumption is even more viable, as the data is collected in advance.
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rn = [ r1n r2n · · · rKn ]T, and when kth object is misdetected, rkn = 0 and rkn = j

corresponds to the case of assigning the jth measurement to the kth object. In a single

instant n, the set of valid hypotheses is described by the set Rn = {r1n, . . . , rRn
n }

where Rn is the cardinality of this set, i.e., it is the number of hypotheses. While

forming a valid association vector, we make two assumptions: (1) an object is either

detected or misdetected, and (2) a measurement cannot be assigned to more than one

object. yrkn
n ∈ Rdy stands for the measurement received from the kth object.

We consider the following probabilistic model in this study for the kth target.

p(xk
n | xk

n−1) =N
(
xn;Axk

n−1,Q
)
, (4.1a)

p(yrkn
n | xk

n) =N
(
yrkn
n ;Cxk

n,R
)
, (4.1b)

for rkn ̸= 0 where A ∈ Rdx×dx is the state transition matrix; C ∈ Rdy×dx is the mea-

surement matrix; Q ∈ Rdx×dx and R ∈ Rdy×dy are the positive-definite covariance

matrices of the process noise and the measurement noise, respectively. The process

noise and the measurement noise are independent. We assume that the objects move

independently and share the same motion dynamics2. Therefore, we write the state

transition density in (4.1a) for an augmented base state, Xn ∈ RdX×dX , containing

the base states of all objects as follows.

p(Xn | Xn−1) =N
(
Xn;AXn−1,Q

)
, (4.2)

where

Xn =[ (x1
n)

T (x2
n)

T · · · (xK
n )

T ]T, (4.3a)

A =IK ⊗A, (4.3b)

Q =IK ⊗Q, (4.3c)

where the sign ⊗ denotes the Kronecker product.

A target is detected with probability PD ∈ [0, 1]. We denote the number of

measurements which are assigned to an object by an association hypothesis as

by mo
n, hence it is equal to the number of detected objects, that is mo

n ≜

#
({

rkn, 1 ≤ k ≤ K | rkn > 0
})

.

2 One can also assume a time-varying and/or object-dependent probabilistic model, the theory developed in
this chapter appertains to those models, as well.
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The number of false alarms is Poisson distributed with the probability mass function

PFA(·) defined as

PFA(m) = PO(m;λc) =
(βFAV )me−βFAV

m!
, (4.4)

where λc is the average number of false alarms in the surveillance region and it is

given as λc = βFAV where βFA is the constant clutter intensity and V is the surveil-

lance region. The spatial probability density function of the false alarms is denoted

by fc(·). In this study, we assume that it is a uniform distribution over the surveillance

region, that is,

fc(yn) =
1

V
. (4.5)

Given the number of measurements mn at time n, we can derive the prior probability

mass function of an association vector rn as

p(rn | mn) =P
mo

n
D (1− PD)

K−mo
nPFA(mn −mo

n)
1(

mn

mo
n

)
mo

n!
(4.6a)

=P
m0

n
D (1− PD)

K−mo
n
(βFAV )mn−mo

ne−βFAV

(mn −mo
n)!

1
mn!

(mn−mo
n)!m

o
n!
mo

n!
(4.6b)

∝Pmo
n

D (1− PD)
K−mo

n(βFAV )mn−mo
n (4.6c)

=P
mo

n
D (1− PD)

K−mo
n(βFAV )mn−K+K−mo

n (4.6d)

∝Pmo
n

D (1− PD)
K−mo

n(βFAV )K−mo
n . (4.6e)

The measurement likelihood function of Yn given the augmented state vector, the

association vector, and the number of measurements is

p(Yn | rn,mn,Xn) =
∏

0≤k≤K
0<rkn

p(yrkn
n | xn, r

k
n)

∏
1≤j≤mn
0≤k≤K
rkn ̸=j

fc(y
j
n), (4.7a)

=
∏

0≤k≤K
0<rkn

p(yrkn
n | xn, r

k
n)

(
1

V

)mn−mo
n

, (4.7b)

∝
(
1

V

)K−mo
n ∏
0≤k≤K
0<rkn

p(yrkn
n | xn, r

k
n). (4.7c)
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In the rest of this chapter, we omit the number of measurements, mn, from the condi-

tional densities for the sake of brevity, as it is a measured, and hence known, variable

at each time step.

The factor graph corresponding to the exact probabilistic model is given in Fig. 4.1. It

is not feasible to compute the optimal smoothed posterior of the augmented state Xn,

therefore, we aim at obtaining an approximate solution to the problem using EPwCA.

X
n

Y
n

p (Y n∣X n , r n)

p (X n∣X n−1)

r
n

X
n-1

Y
n-1

p (Y n−1∣X n−1 , rn−1)

r
n-1

X
n+1

Y
n+1

p (Y n+1∣Xn+1 , r n+1)

p (X n+1∣Xn)

r
n+1

p (rn−1) p (rn) p (rn+1)

Figure 4.1: Factor graph for the exact model.

In this chapter, we will obtain the approximate smoothed posterior distributions given

as

p(Xn | Y0:N) = N (Xn;Xn|N ,Σn|N) (4.8)

for n = 0, . . . , N , where Y0:N = {Y0,Y1, . . . ,YN}. To this end, we will derive a

fixed interval smoother using EPwCA in Section 4.3. Moreover, we will apply our al-

gorithm as a fixed-lag smoother, as described in Section 4.4 to obtain the approximate

filtered distributions written as

p(Xn | Y0:n) = N (Xn;Xn|n,Σn|n). (4.9)

4.3 Expectation Propagation with Context Adjustment for Data Association

Problem in Multi-Target Tracking

We make the following approximation to compute the approximate posterior in (4.8)

p(Xn | Xn−1) ≈ qfn(Xn)q
b
n−1(Xn−1), (4.10)
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where qfn(Xn) and qbn−1(Xn−1) are the forward and backward factors, respectively.

The corresponding approximate factor graph is depicted in Fig. 4.2. Using the ap-

proximate factors, we calculate the approximate smoothed posteriors as

q(Xn) ∝
∑
rn

qfn(Xn)p(Yn | Xn, rn)p(rn)q
b
n(Xn). (4.11)

X
n

Y
n

p (Y n∣X n , r n)

qn
b(X n)qn

f (X n)

r
n

X
n-1

Y
n-1

p (Y n−1∣X n−1 , rn−1)

qn−1
b (Xn−1)qn−1

f (Xn−1)

r
n-1

X
n+1

Y
n+1

p (Y n+1∣Xn+1 , r n+1)

qn+1
b (Xn+1)qn+1

f (Xn+1)

r
n+1

p (rn) p (rn+1)p (rn−1)

Figure 4.2: The approximate factor graph for the data association problem

Similar to the JMLS problem in Section 3.3, the backward factor approximates the

likelihood function involving future measurements, i.e., p(Yn+1:N | Xn), whereas

the filtered posterior is approximated by marginalizing out the remaining terms, i.e.,

qfn(Xn)p(Yn | Xn, rn)p(rn), with respect to the association vector, rn.

4.3.1 Assumed Forms of the Factors

We assume that the forward factor, qfn(Xn), has an exponential form

qfn(Xn) ≜ exp

(
− 1

2
(Xn − µf

n)
TΦf

n(·)
)
, (4.12)

where µf
n ∈ RdX , Φf

n ∈ RdX×dX . We make use of the function ρfn(Xn, rn) that is

now defined for the augmented state as follows

ρfn(Xn, rn) ≜
p(Yn|Xn, rn)p(rn)q

f
n(Xn)∫

Xn

∑
rn
p(Yn|Xn, rn)p(rn)q

f
n(Xn)

, (4.13)

where we assume that p(Yn|Xn, rn)p(rn)q
f
n(Xn) is normalizable, the sufficient con-

ditions for which are

Φf
n +CTR−1C > 0, (4.14a)
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Φf
n > 0. (4.14b)

Under these conditions, we can write

ρfn(Xn, rn) = αf,rn
n N (Xn;m

f,rn
n ,Pf,rn

n ), (4.15)

where

αf
n,rn ≜

∏
K

αf,k
n,rn , (4.16a)

αf,k
n,rn ≜


(1− PD)βFA, rkn = 0

√
|Pf,k

n,rn |√
|R|

exp

(
− 1

2

(
(y

rkn
n )TR−1y

rkn
n

+(µf,k
n )TΦf,k

n µf,k
n , rkn ̸= 0,

(4.16b)

mf
n,rn ≜

[ (
mf,1

n,rn

)T (
mf,2

n,rn

)T · · ·
(
mf,K

n,rn

)T ]T , (4.16c)

mf,k
n,rn ≜

 µf,k
n , rkn = 0

Pf,k
n,rn

(
(Φf,k

n )−1µf,k
n +CTR−1y

rkn
n

)
, rkn ̸= 0,

(4.16d)

Pf
n,rn ≜blkdiag

[
Pf,1

n,rn , Pf,2
n,rn , · · · , Pf,K

n,rn

]
, (4.16e)

Pf,k
n,rn ≜

 Φf,k
n , rkn = 0(

(Φf,k
n )−1 +CTR−1C

)−1
, rkn ̸= 0

. (4.16f)

Note that we can uniquely determine the parameters {αf
n,rn ,m

f
n,rn ,P

f
n,rn} from

{µf
n,Φ

k
n}. Therefore, we use ρfn(Xn, rn) instead of qfn(Xn) in the optimization as

we do in the JMLS problem. Similarly, we assume that the backward factor is the

following pseudo likelihood function

qbn(Xn) ≜ N (yb
n;C

b
nXn,R

b
n), (4.17)

where yb
n ∈ RLn , Cb

n ∈ RLn×dX , and Rb
n ∈ RLn×Ln are the variables to be found by

EPwCA.

4.3.2 Derivation of the Updates

4.3.2.1 Update of the Forward Factor ρfn(Xn, rn)

The expectation propagation problem for the forward factor is

ρnew,f
n (·, ·) = argmin

ρfn(·,·)
KL
(
ψ̄f
n(·, ·) ∥ ψf

n(·, ·)
)
, (4.18)
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where the densities ψ̄f
n(·, ·) and ψf

n(·, ·) are defined as

ψ̄f
n(Xn, rn) ∝

[
qbn(Xn)

]γf
n
p(Yn | Xn, rn)p(rn)

∑
rn−1

∫
Xn−1

[
p(Xn | Xn−1)

× ρfn−1(Xn−1, rn−1)
]
, (4.19a)

ψf
n(Xn, rn) ∝

[
qbn(Xn)

]γf
n
ρfn(Xn, rn). (4.19b)

Note that we apply the context adjustment on the cavity distribution qbn(Xn) above

with the adjustment exponent γfn . Using the results of the derivations in Ap-

pendix C.1, we write the densities as

ψ̄f
n(Xn, rn) ∝β̄f,rn

n

∑
rn−1

βf,rn
n,rn−1

N (Xn;v
f,rn
n,rn−1

,Vf,rn
n,rn−1

), (4.20a)

ψf
n(Xn, rn) ∝βf,rn

n αf,rn
n N (Xn,v

f,rn
n ,Vf,rn

n ). (4.20b)

Then, using the Appendix D.2, the solution of the M-projection problem in (4.18) is

given by

αf,rn
n ∝ β̄f,rn

n /βf,rn
n , (4.21a)

mf,rn
n =Pf,rn

n

(
(V

f,rn
n )−1v̄f,rn

n − γfn(Cb
n)

T(Rb
n)

−1yb
n

)
, (4.21b)

Pf,rn
n =

(
(V

f,rn
n )−1 − γfn(Cb

n)
T(Rb

n)
−1Cb

n

)−1
, (4.21c)

where

v̄f,rn
n ≜

∑
rn−1

βf,rn
n,rn−1

vf,rn
n,rn−1

, (4.22a)

V
f,rn
n ≜

∑
rn−1

βf,rn
n,rn−1

[
Vf,rn

n,rn−1
+ (vf,rn

n,rn−1
− v̄f,rn

n )(·)T
]
. (4.22b)

4.3.2.2 Update of the Backward Factor qbn(Xn)

The variational inference problem for the backward factor is defined as

qb,newn (·) = argmin
qbn(·)

KL
(
ψ̄b
n(·) ∥ ψb

n(·)
)
, (4.23)

where

ψ̄b
n(Xn) ∝

∑
rn

[
ρfn(Xn, rn)

]γb
n
∑
rn+1

∫
Xn+1

[
p(Xn+1 | Xn)p(Yn+1 | Xn+1, rn+1)
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× qbn+1 (Xn+1) p(rn+1)
]
, (4.24a)

ψb
n(Xn) ∝ qbn(Xn)

∑
rn

[
ρfn(Xn, rn)

]γb
n , (4.24b)

where the context adjustment is applied on ρfn(Xn, rn) with the context adjustment

exponent γbn. After tedious calculations presented in Appendix C.2, these densities

are written as

ψ̄b
n(Xn) ∝N (Xn; v̄

b
n,V

b

n), (4.25a)

ψb
n(Xn) ∝N (yb

n;C
b
nXn,R

b
n)N (Xn;v

b
n,V

b
n). (4.25b)

In order to solve the M-projection problem in (4.23) we make use of the results of

Appendix A as in Section 3.3.2.2. Then, the generalized eigenvalue problem we

solve becomes

Vb
n

γbn
en,i = λn,iV

b

nen,i i = 1, . . . , dX . (4.26)

We denote the number of generalized eigenvalues that satisfy λn,i > 1 using Ln, that

is, Ln ≜ #
(
{λn,i, i = 1, . . . , dX |λn,i > 1}

)
. If Ln = 0, then we set qbn(Xn) = 1

implying that (4.23) has no solution satisfying Rb
n > 0. In such a case, by setting

qbn(Xn) = 1, the smoothed estimates at time n are rendered as the filtered estimates.

In this a case, one can alternatively reduce the context adjustment exponent to find a

solution.

When Ln > 0, among the generalized eigenvalue-eigenvectors with λn,i > 1, one can

either choose the pairs with the maximum eigenvalues or the ones that maximize the

following score.

sn,i ≜ log λn,i +
1

λn,i
+ γbn

(eTn,i(v
b
n − v̄b

n))
2

eTn,iV
b
nen,i

, (4.27)

Once the generalized eigenvalue-eigenvector pairs are selected, the solution is given

as

yb
n =
[

(en,1)Tṽb
n,1

λn,1−1
· · · (en,Ln )

Tṽb
n,Ln

λn,Ln−1

]T
, (4.28a)

Cb
n =
[
en,1 en,2 · · · en,Ln

]T
, (4.28b)

Rb
n =diag

(
(en,1)

TVb
nen,1

λn,1 − 1
, . . . ,

(en,Ln)
TVb

nen,Ln

λn,Ln − 1

)
, (4.28c)
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where

ṽb
n,i ≜ λn,iv̄

b
n − vb

n. (4.29)

4.3.2.3 Computing the Final State Estimates

The approximate smoothed posterior in (4.11) when n < N is computed as

qn(Xn) =
∑
rn

qbn(Xn)ρ
f
n(Xn, rn)∫

xn

∑
rn
qbn(Xn)ρ

f
n(Xn, rn)

, (4.30a)

=
∑
rn

πrn
n|N N (Xn;X

rn
n|N ,Σ

rn
n|N), (4.30b)

= N (Xn;Xn|N ,Σn|N), (4.30c)

where

π̄rn
n|N ∝α

f,rn
n N (yb

n;C
b
nm

f,rn
n ,Srn

n ), (4.31a)

πrn
n|N ≜

π̄rn
n|N∑

rn
π̄rn
n|N

, (4.31b)

Srn
n ≜Cb

nP
f,rn
n (Cb

n)
T +Rb

n, (4.31c)

Xrn
n|N =Σrn

n|N
(
(Pf,rn

n )−1mf,rn
n + (Cb

n)
T(Rb

n)
−1yb

n

)
, (4.31d)

Σrn
n|N =

(
(Pf,rn

n )−1 + (Cb
n)

T(Rb
n)

−1Cb
n

)−1
, (4.31e)

Xn|N =
∑
rn

πrn
n|NX

rn
n|N , (4.31f)

Σn|N =
∑
rn

πrn
n|N
(
Σrn

n|N + (Xrn
n|N −Xn|N)(X

rn
n|N −Xn|N)

T
)
. (4.31g)

The smoothed posterior density for kth object is computed as

p(xk
n | Y0:N) =N (xk

n;x
k
n|NΣ

k
n|N), (4.32a)

=

∫
{xj

n}Kj=1
j ̸=k

N (Xn;Xn|NΣn|N), (4.32b)

for k = 1, . . . , K. Then, using Lemma 2,

xk
n|N =[Xn|N ]i:j, (4.33a)

Σk
n|N =[Σn|N ]i:j×i:j (4.33b)
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where i = 1 + (k − 1) · dx and j = k · dx, for k = 1, . . . , K, and [·]i:j indicates

the sub-vector containing the elements from ith index to the jth. Similarly, [·]i:j×i:j

selects the sub-block which is formed by the elements from ith rows and columns to

the jth.

As we have no backward factor at n = N , the parameters of the mixture components

in (4.30b) become

πrN
N |N ∝α

f,rN
N , xrN

N |N =mf,rN
N , ΣrN

N |N =Pf,rN
N , (4.34)

for rN = 1, . . . , RN .

4.3.3 Selection of the Adjustment Exponents

4.3.3.1 Selection of γfn

The forward adjustment exponent, γfn , is selected as described in Section 3.3.3.1 for

n = 1, . . . , N .

4.3.3.2 Selection of γbn

The selection procedure of γbn is as presented in Sec. 3.3.3.2.

4.3.4 Pseudo-Code of the Algorithm

We initialize the EPwCA factors as follows. We first form the initial distribution for

the augmented state vector as follows.

p(X0) =N (X0;X0|−1,Σ0|−1), (4.35)

where the augmented quantities are defined as

X0 =[ (x1
0)

T · · · (xK
0 )

T ]T, (4.36a)

X0|−1 =[ (x1
0|−1)

T · · · (xK
0|−1)

T ]T, (4.36b)
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Σ0|−1 ≜blkdiag
[
Σ1

0|−1, · · · , ΣK
0|−1

]
. (4.36c)

(4.36d)

We compute the parameters of the first forward factor ρf0(x0, r0) by performing a mea-

surement update on the initial distribution p(X0) using the augmented measurement

quantities given in (C.3) for n = 0 and ∀k satisfying rk0 > 0 for all r0 as

αf,r0
0 ∝ N (ȳf,r0

0 ;C
f,r0
0 ,Sr0

0 ), (4.37a)

mf,r0
0 =Pf,r0

0 (Σ−1
0|−1X0|−1 + (C

f,r0
0 )T(R

f,r0
0 )−1ȳf,r0

0 ), (4.37b)

Pf,r0
0 =((Σ0|−1)

−1 + (C
f,r0
0 )T(R

f,r0
0 )−1C

f,r0
0 )−1, (4.37c)

where

Sr0
0 ≜ C

r0
0 Σ0|−1(C

r0
0 )T +R

r0
0 . (4.38)

As outlined in Section 3.3.4, a forward pass with γfn = 0, n = 1, . . . , N is performed

to initialize the forward factors ρfn(·, ·), n = 1, . . . , N . Then, we perform forward

and backward passes successively until a convergence criterion is met. The pseudo-

code of the proposed smoother algorithm is given in Algorithm 5. The forward and

backward pass algorithms are described in Algorithm 6 and Algorithm 7, respectively.

In contrast to the JMLS problem, damping is not included in Algorithm 6 in this case,

as no need has arisen during our simulations. If one needs to do otherwise, they can

refer to (3.38).

Algorithm 5 Pseudo Code for EPwCA Smoother

Input: ,X0|−1,Σ0|−1; {Yn}Nn=0; Γconv; Jmax; δ, {Rn}Nn=0.

Output: {xn|N ,Σn|N}Nn=0.

1: γfn = 0, n = 1, . . . , N .

2: Calculate {αf,r
0 ,mf,r

0 ,Pf,r
0 }Rr=1.

3: for n = 1 : N do

4: Run Alg. 6 to get {αf,r
n ,mf,r

n ,Pf,r
n }Rr=1.

5: end for

6: γfn = 1, n = 1, . . . , N − 1.

7: γbn = 1, n = 0, . . . , N − 1.

8: for n = N − 1 : −1 : 1 do
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9: Run Alg. 7 to get {yb
n,C

b
n,R

b
n}.

10: end for

11: Find the final estimates {Xn|N ,Σn|N} for n = 0, . . . , N .

12: j = 1

13: econv =∞
14: while econv > Γconv & j ≤ Jmax do

15: xold
n|N = xn|N ; n = 0, . . . , N .

16: for n = 1 : N do

17: Run Alg. 6 to get {αf,r
n ,mf,r

n ,Pf,r
n }Rr=1.

18: end for

19: for n = N − 1 : −1 : 1 do

20: Run Alg. 7 to get {yb
n,C

b
n,R

b
n}.

21: end for

22: Find the final estimates {xn|N ,Σn|N} for n = 0, . . . , N .

23: econv =
(

1
dXN

∑N
n=0 ∥xold

n|N − xn|N∥2)0.5

24: j ← j + 1

25: end while

Algorithm 6 Pseudo Code for Forward Factor Update

Input: γfn , ∆γf , ϵ1, ϵ2.

Input: {αf,r
n−1,m

f,r
n−1,P

f,r
n−1}Rr=1, Yn,Rn.

Input: yb
n,C

b
n,R

b
n. ▷ If γfn ̸= 0

Output: {αf,r
n ,mf,r

n ,Pf,r
n }Rr=1,γ

f
n .

1: gammaReductionFlag = 1

2: while gammaReductionFlag = 1 do

3: gammaReductionFlag = 0

4: for r = 1 : R do

5: Calculate β̄f,r
n , v̄f,r

n ,V
f,r

n .

6: Calculate mf,r
n ,Pf,r

n .

7: Calculate unnormalized αf,r
n .

8: if min eig (Pf,r
n )−1 ≤ ϵ1 or

9: min eig V
f,r

n (Pf,r
n )−1 ≤ ϵ2 then

10: gammaReductionFlag = 1
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11: end if

12: end for

13: Normalize αf,r
n , r = 1, . . . , R.

14: if gammaReductionFlag = 1 then

15: γfn ← max{0, γfn −∆γf}
16: end if

17: end while

Algorithm 7 Pseudo Code for Backward Factor Update

Input: γbn, ϵ3.

Input: {αf,r
n ,mf,r

n ,Pf,r
n }Rr=1, Yn+1,Rn+1.

Input: yb
n+1,C

b
n+1,R

b
n+1. ▷ If n ≤ N − 2

Output: yb
n,C

b
n,R

b
n.

1: Calculate v̄b
n,V

b

n.

2: Calculate vb
n,V

b
n.

3: Solve the generalized eigenvalue problem

Vb
nen,i = λn,iV

b

nen,i

4: Order the generalized eigenvalue-eigenvector pairs in decreasing generalized

eigenvalue order.

5: Ln = #
(
{λn,i, i = 1, . . . , dX |λn,i > 1 + ϵ3}

)
6: Choose the first Ln generalized eigenvalue-eigenvector pairs.

7: Calculate yb
n,C

b
n,R

b
n.

4.3.5 Computational Complexity

In this section, we analyze the computational complexity of EPwCA Smoother. Sim-

ilar to Section 3.3.5, the algorithm is partitioned into three sub-blocks: the forward

pass, the backward pass, and the computation of the state estimates, with computa-

tional loads F , B, and E, respectively. The overall computational load of EPwCA

smoother is O(JmaxN(F +B + E)).

The computational loads of the sub-blocks are F = O
(
RnRn−1d

3
X/∆γ

f )
)
, B =

O(RnRn+1d
3
X), and E = O(Rnd

3
X), as they are all dominated by the Kalman filter
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or smoother operations. A downside of the proposed smoother is that the number

of hypotheses, Rn at time n, is determined by permuting the measurements and no-

detection case with the targets, therefore the computational cost increases combinato-

rially fast. Thus, it can be necessary to incorporate some mechanisms, such as gating,

in order to control the number of hypotheses, when the computational capacity is

limited or when tracking under heavy-clutter.

4.4 Extension to Filtering Problem

We apply the same filtering mechanism explained in Section 3.4.

4.4.1 Pseudo Code of the Filtering Algorithm

Algorithm 8 Pseudo Code for EPwCA Filter

Input: X0|−1,Σ0|−1; {Yn}Nn=0; τ ; Γconv; Jmax; δ, {Rn}Nn=0.

Output: Xn|n,Σn|n for n = 1, . . . , N .

1: γfn = 0, n = 1, . . . , N .

2: for n = 1 : N do

3: Run Alg. 1 using {Yj}nj=i and {Rj}nj=i to get {Xj|n,Σj|n} for i =

max(1, n− τ).
4: Save {Xn|n,Σn|n} as the filter output.

5: Use {αf,r
i+1,m

f,r
i+1,P

f,r
i+1} to initialize the Alg. 2 in the next run.

6: end for

4.5 Simulation Results

4.5.1 Test Scenarios

The suggested smoother and filter are tested on two scenarios.

58



Table 4.1: The simulation parameters of the tests

K PD βFA (×10−4)

Test 1 2 0.9, 0.8, 0.7 1.5

Test 2 2 0.9 1.5, 3, 4.5

Test 3 2, 4, 6 0.9 1.5

4.5.1.1 Nearly Constant Velocity Scenario

We use a nearly-constant velocity model in 2-D with different parameter sets to test

the proposed smoother and filter algorithms. The base state vector for the kth target

is xk
n ≜ [px

n p
y
n v

x
n v

y
n]

T, n = 0, . . . , 10. The model is

A =

 1 T

0 1

⊗ I2, (4.39a)

Q =(σw)
2

 T 4/4 T 3/2

T 3/2 T 2

⊗ I2, (4.39b)

C =
[
I2 02

]
, (4.39c)

R =σ2
vI2, (4.39d)

where T = 0.5 s, σw = 8m/s2, σv =
√
5m. The parameters of the initial distribution

for each target state are given as p(xk
0) = N (xk

0;µ
k
0|−1,Σ

k
0|−1) with

Σk
0|−1 =

 25 0

0 0.01

⊗ I2. (4.40)

The position entries of µk
0|−1 are selected randomly according to a uniform distribu-

tion from the surveillance region of (0, 100)×(0, 100), while the velocity components

are drawn from a uniform distribution between [−5, 5] m/s. The algorithms use the

same model as the one given above. Table 4.1 shows the simulation parameters of

different tests.
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4.5.1.2 U-Turn Scenario

Inspired by [72], this scenario is composed of constant velocity motion and coor-

dinated turn motion. The two targets approach each other with a constant velocity

motion along the y-axis, and after making a coordinated turn, they move side by side

along the x-axis with the constant velocity. The targets split with a second coordi-

nated turn and move away from each other. In conclusion, two U-shaped trajectories

that are quite close to each other at some interval are formed, which are illustrated in

4.3.

The starting points of the targets are (0, 3000) and (0,−3000). During the constant

velocity motion, the speed of each target is 100 m/s. The separation between the

targets during the second interval of constant velocity motion is 50m. Each constant

velocity motion lasts 20 s, whereas the duration of each interval of coordinated turn

is 15 s. The turn-rate of the coordinated turn is 0.1 rad/s.

x-axis (m)

y
-a

x
is

 (
m

)

Figure 4.3: The trajectories of the U-Turn Test. The big circles indicate the starting

points of the trajectories.

We carry out only one test having the parameters given in Table 4.2 due to the poor
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Table 4.2: The simulation parameters of the U-Turn Test

K PD βFA

U-Turn Test 2 0.999 1 · 10−7

performance of the alternative methods even in such an optimistic setting.

4.5.2 Performance Metrics

We consider the mean RMS and median errors that are averaged over targets as per-

formance metrics. In addition to these, we also make use of the optimal sub-pattern

assignment (OSPA) [73] that is available as a built-in function on MATLAB. The

definition of OSPA is given as

D(Xn,Yn) = (dploc + dpcard + dplab)
1
p (4.41)

where Xn and Yn are set of ground truths and tracks at time n, respectively, with the

cardinalities, l, and k. dloc is the localization error between the assigned pairs that is

given by

dloc =

[
1

k

(
min
πk∈Π

l∑
i=1

dpc(xn,i, yn,π(i))

)] 1
p

, (4.42)

where dc(x, y) is the saturated distance, that is,

dc(x, y) = min(c, d(x, y)), (4.43)

where c is the cut-off distance. The cardinality error, dcard, penalizes the unequal

number of tracks and ground truths according to the following formula

dcard =

(
cp
|k − l|
k

) 1
p

. (4.44)

Therefore, it implicitly accounts for the missed-targets and/or false tracks. However,

this study assumes that the number of targets is fixed and known; thus, this error

component is always zero. Finally, the last error component in (4.41) stands for the

labeling errors, and it is defined as

dlab =

[
1

k

(
min
πk∈Π

l∑
i=1

αpγ(L(xn,i), L(yn,π(i)))

)] 1
p

, (4.45)
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where L(·) retrieves the labels of the tracks and ground truths. If the labels match

the correct assignment, then the function γ returns 0; otherwise, it gives 1. α is the

penalty for incorrect assignments and should satisfy the condition α ≤ c.

In this study, we used the Euclidian distance as the distance measure d(·, ·). The

order, p, is selected as 2. The cut-off distance and labelling penalty are assigned to

c = 50m and α = 50, respectively. The assignment decisions between the ground

truths and the tracks are obtained using the GNN method.

Another metric we make use of is the ratio of the number of Monte Carlo runs in

which a switch of track identity occurs to the total number of Monte Carlo runs.

We name this ratio as track switch score (TSS). Furthermore, in order to have an

insight into the algorithms’ performance in terms of track convergence, we keep a

convergence score for each method, which is calculated as the ratio of the number

of converged tracks to the total number of tracks. A track is said to have diverged

if the error between a track and the corresponding true trajectory exceeds a given

threshold for 20% of the track’s duration. Additionally, new RMS and median errors

are computed after discarding the diverged tracks. The convergence threshold is set

to 5 times the standard deviation of the prior density of the velocity.

4.5.3 Results

4.5.3.1 Results for the Smoothing Algorithms

We have implemented the following smoothers for comparison:

• Rahmathullah et al. [69]: The smoother proposed by Rahmathullah et al. [69].

• PMHT [63]: The smoothing algorithm proposed by Streit & Luginbuhl [63].

• EPwCAS: The proposed smoother in this work with parameters Jmax = 20,

Γconv = 10−4, ϵ1 = 10−10, ϵ2 = 10−2, ϵ3 = 10−6, ∆γf = 10−1. No damping

is applied in this problem. Furthermore, we include the gating mechanism with

a probability of 0.99 in order to ease the computational burden. However, the

performance of the alternative methods degrades when gating is in operation,
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therefore, gating is not employed with the alternatives.

The performance assessment is carried over 100 Monte Carlo runs for each test. One

example of the estimates of the Test-3 with K = 4 is illustrated on the right-hand

side of Fig. 4.4 where EPwCAS exhibits the best result. The example for the U-Turn

Test in Fig. 4.4 emphasizes the performance difference between the smoothers. The

EPwCAF is able to follow the targets, while the others fail during the first maneuver

due to poor initialization.

In Tables 4.3 and 4.4, we observe that the proposed smoother, EPwCAS, performs

better in all metrics than Rahmathullah and PMHT. Decreasing the probability of

detection, PD, results in a dramatic increase in median errors of Rahmathullah and

PMHT, while they increase only slightly in the case of EPwCAS. Additionally, EPw-

CAS performs better in terms of the convergence score. Tables 4.5 and 4.6 illustrate

the performances with respect to the increasing false alarm rates. EPwCAS outper-

forms other methods by achieving nearly half of the error and OSPA values of the

other methods. The increasing false alarm rate does not affect significantly the met-

rics related to the track convergence, on the other hand, the decrease in the scores

of Rahmathullah and PMHT is much faster. Similar to the previous tests, the OSPA

value and the convergence score of the EPwCAS in Tables 4.7 and 4.6 indicate its

superiority over the alternative techniques. In all these tests, EPwCAS scores lower

TSS. Though TSSs of the alternative methods are close to the EPwCA, they actually

suffer from track coalescence which does not affect this metric. Finally, it is evident

from Tables 4.9 and 4.10 that Rahmathullah and PMHT fail to follow the maneuver-

ing targets, while EPwCAS is able to track the targets fully with a considerably low

RMS and median errors.

In conclusion, the proposed smoother demonstrates better performance in all metrics.

However, its use in scenarios with much higher clutter density and a greater number

of targets is limited due to its computational burden even when the gating is applied.

On the other hand, though other methods are not computationally heavy algorithms,

they are quite sensitive to initialization. Moreover, the mechanisms that are applied to

overcome this issue come with their overheads. Therefore, their computational times

become much longer compared to EPwCAS in scenarios covered in this thesis.
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Table 4.3: The smoothed mean OSPA and mean errors for Test-1.

PD OSPA PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s) TSS

0.9

Rahmathullah et al. 15.59 37.99 13.32 4.42 5.71 0.03

PMHT 12.27 32.40 11.23 3.04 5.31 0.05

EPwCAS 4.67 16.44 6.61 1.98 3.45 0

0.8

Rahmathullah et al. 21.76 44.08 16.16 19.09 9.94 0.06

PMHT 19.24 41.88 13.89 18.79 9.10 0.07

EPwCAS 6.15 22.29 7.97 2.28 3.74 0.01

0.7

Rahmathullah et al. 29.62 59.99 19.62 40.75 14.70 0.06

PMHT 23.95 48.08 15.59 27.75 11.53 0.08

EPwCAS 8.63 25.12 9.83 2.78 4.32 0.04

Table 4.4: The smoothed convergence score and mean errors for Test-1 after the

divergent tracks are left out.

PD score PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s)

0.9

Rahmathullah et al. 0.73 20.61 1.63 8.63 2.62

PMHT 0.78 19.19 1.65 7.22 2.87

EPwCAS 0.93 12.52 1.27 5.44 2.18

0.8

Rahmathullah et al. 0.59 23.01 1.96 8.09 3.00

PMHT 0.59 26.84 2.01 8.98 3.19

EPwCAS 0.90 17.36 1.35 5.85 2.30

0.7

Rahmathullah et al. 0.41 31.28 2.70 10.78 3.83

PMHT 0.46 25.43 2.34 8.34 3.46

EPwCAS 0.84 17.69 1.52 6.37 2.49
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Table 4.5: The smoothed mean OSPA and mean errors for Test-2.

βFA (×10−4) OSPA PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s) TSS

1.5

Rahmathullah et al. 15.59 37.99 13.32 4.42 5.71 0.03

PMHT 12.27 32.40 11.23 3.04 5.31 0.05

EPwCAS 4.67 16.44 6.61 1.98 3.45 0

3

Rahmathullah et al. 16.61 37.82 15.64 11.47 7.72 0.05

PMHT 14.04 34.18 11.60 9.16 7.25 0.04

EPwCAS 6.11 16.50 7.30 2.05 3.69 0.03

4.5

Rahmathullah et al. 19.19 43.27 16.98 15.76 9.71 0

PMHT 18.76 40.23 13.88 20.62 9.41 0.03

EPwCAS 6.31 17.93 7.77 2.28 3.75 0

Table 4.6: The smoothed convergence score and mean errors for Test-2 after the

divergent tracks are left out.

βFA (×10−4) score PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s)

1.5

Rahmathullah et al. 0.73 20.61 1.63 8.63 2.62

PMHT 0.78 19.19 1.65 7.22 2.87

EPwCAS 0.93 12.52 1.27 5.44 2.18

3

Rahmathullah et al. 0.66 25.82 1.69 11.23 2.73

PMHT 0.70 20.23 1.80 6.50 2.94

EPwCAS 0.88 10.12 1.23 3.63 2.08

4.5

Rahmathullah et al. 0.61 29.35 2.24 9.83 3.31

PMHT 0.56 23.54 2.40 9.24 3.50

EPwCAS 0.89 13.09 1.29 5.13 2.27

65



Table 4.7: The smoothed mean OSPA and mean errors for Test-3.

K OSPA PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s) TSS

2

Rahmathullah et al. 15.59 37.99 13.32 4.42 5.71 0.03

PMHT 12.27 32.40 11.23 3.04 5.31 0.05

EPwCAS 4.67 16.44 6.61 1.98 3.45 0

4

Rahmathullah et al. 17.29 41.75 14.27 31.45 11.60 0.15

PMHT 14.80 38.99 12.10 26.17 9.46 0.10

EPwCAS 5.89 23.39 7.81 2.37 3.89 0.08

6

Rahmathullah et al. 17.04 48.95 16.97 44.07 15.00 0.37

PMHT 20.58 46.41 14.66 38.11 13.08 0.33

EPwCAS 5.53 24.10 8.82 4.28 4.60 0.20

Table 4.8: The smoothed convergence score and mean errors for Test-3 after the

divergent tracks are left out.

K score PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s)

2

Rahmathullah et al. 0.73 20.61 1.63 8.63 2.62

PMHT 0.78 19.19 1.65 7.22 2.87

EPwCAS 0.93 12.52 1.27 5.44 2.18

4

Rahmathullah et al. 0.61 27.72 6.51 9.72 4.59

PMHT 0.69 21.01 2.36 7.68 3.64

EPwCAS 0.88 16.34 1.47 5.73 2.48

6

Rahmathullah et al. 0.50 34.33 19.33 12.23 7.26

PMHT 0.58 29.44 14.82 9.52 5.90

EPwCAS 0.86 19.37 1.78 6.51 2.79
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Table 4.9: The smoothed mean OSPA and mean errors for U-Turn Test.

OSPA PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s) TSS

Rahmathullah et al. 45.56 3405.4 561.79 3373.6 512.03 0

PMHT 53.50 3265.2 118.71 3268.5 118.74 0

EPwCAS 0.57 0.61 3.29 0.55 3.02 0

Table 4.10: The smoothed divergence score and mean errors for U-Turn Test after the

divergent tracks are left out.

score PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s)

Rahmathullah et al. 0 - - - -

PMHT 0 - - - -

EPwCAS 1 0.43 0.35 2.30 1.90

4.5.3.2 Results for the Filtering Algorithms

In order to carry out the performance analysis following filters are implemented.

• JPDA [61]: A widely-used algorithm that stores a single hypothesis at the end

of each time step. It performs the measurement update using an equivalent

measurement formed by merging the association hypotheses in a single scan.

• EPwCAF: The proposed filter in this work with a window size of 3. The other

parameters are Jmax = 2, Γconv = 10−2, ϵ1 = 10−10, ϵ2 = 10−2, ϵ3 = 10−6,

∆γf = 10−1. No damping is applied.

We performed 100 Monte Carlo runs for each test in Table 4.1. The right-hand side

of Fig. 4.5, in which the filters produce very similar estimates, illustrates an example

run for Test-3 with K = 4. On the other hand, JPDA mistakenly exchanges the target

identities during the second maneuver in the realization of U-Turn Test in Fig.4.5,

whereas EPwCAF successfully follows and correctly distinguishes the targets.

Each test reveals an almost similar behavior in regard to the changing parameters.
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Table 4.11: The filtered mean OSPA and mean errors for Test-1.

PD OSPA PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s) TSS

0.9
JPDA 5.00 20.90 11.03 4.09 7.94 0

EPwCAF 5.88 18.96 8.59 2.70 5.24 0

0.8
JPDA 7.01 31.02 13.15 4.96 8.83 0.02

EPwCAF 8.56 28.32 10.52 3.13 5.77 0

0.7
JPDA 9.99 34.72 14.19 6.94 9.99 0.01

EPwCAF 10.66 30.08 11.30 3.75 6.44 0.02

Tables 4.11-4.14 suggest that there are only slight differences between EPwCAF and

JPDA. The OSPA value, score, and errors of the convergent runs of JPDA are better

than those of EPwCAF. In contrast, EPwCAF attains lower error values compared

to JPDA before discarding the divergent estimates. In Tables 4.15 and 4.16, though

JPDA achieves better performance values, the results of the two filters are very close

as opposed to the previous tests. On the other hand, the performance difference be-

tween the two methods is rather striking in U-Turn Test. EPwCAF surpasses JPDA by

following the maneuvering targets in all runs, while JPDA is able to generate a track

that is not diverging in only one instance due to track switches. The poor performance

stems from the target identity switches during the maneuvers. That explains the con-

siderable gap between the errors of EPwCAF and JPDA in Tables 4.17 and 4.10.

We note that the performance of the proposed algorithm can be improved further by

increasing fixed-lag smoothing the window size.

As mentioned in Section 3.5, the filter results can come out better than the smoother

results, as a faulty assignment decision made at an instant can propagate to the previ-

ous time instants and degrade the performance in the smoother.

4.6 Conclusion

In this chapter, a fixed-interval smoother and a filter have been derived for the data

association problem in MTT. The concept of context adjustment and the idea of using
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Table 4.12: The filtered convergence score and mean errors for Test-1.

PD score PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s)

0.9
JPDA 0.96 10.92 1.82 5.74 3.59

EPwCAF 0.92 12.29 1.85 5.89 3.64

0.8
JPDA 0.93 19.23 2.08 7.18 3.83

EPwCAF 0.85 18.22 2.01 6.92 3.81

0.7
JPDA 0.86 20.63 2.54 7.64 4.20

EPwCAF 0.82 18.34 2.37 7.37 4.14

Table 4.13: The filtered mean OSPA and mean errors for Test-2.

βFA (×10−4) OSPA PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s) TSS

1.5
JPDA 5.00 20.90 11.03 4.09 7.94 0

EPwCAF 5.88 18.96 8.59 2.70 5.24 0

3
JPDA 6.34 19.38 11.07 4.41 8.30 0.02

EPwCAF 7.67 18.42 8.46 2.62 5.09 0.02

4.5
JPDA 6.72 21.28 11.04 5.09 8.66 0

EPwCAF 7.63 18.73 8.62 2.83 5.54 0

Table 4.14: The filtered convergence score and mean errors for Test-2.

βFA (×10−4) score PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s)

1.5
JPDA 0.96 10.92 1.82 5.74 3.59

EPwCAF 0.92 12.29 1.85 5.89 3.64

3
JPDA 0.91 11.71 1.82 5.13 3.39

EPwCAF 0.85 10.93 1.77 5.14 3.39

4.5
JPDA 0.91 14.37 2.04 5.98 3.88

EPwCAF 0.88 14.01 1.95 6.01 3.76
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Table 4.15: The filtered mean OSPA and mean errors for Test-3.

K OSPA PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s) TSS

2
JPDA 5.00 20.90 11.03 4.09 7.94 0

EPwCAF 5.88 18.96 8.59 2.70 5.24 0

4
JPDA 5.45 45.08 17.37 6.85 12.51 0.12

EPwCAF 7.30 23.49 9.28 2.71 5.32 0.05

6
JPDA 6.26 60.98 23.22 11.83 16.91 0.27

EPwCAF 8.04 20.86 8.64 2.73 5.27 0.26

Table 4.16: The filtered convergence score and mean errors for Test-3.

K score PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s)

2
JPDA 0.96 10.92 1.82 5.74 3.59

EPwCAF 0.92 12.29 1.85 5.89 3.64

4
JPDA 0.90 15.90 2.18 6.27 4.01

EPwCAF 0.87 17.02 2.21 6.50 4.03

6
JPDA 0.87 15.65 2.52 6.30 4.42

EPwCAF 0.84 14.97 2.69 6.43 4.43

Table 4.17: The filtered mean OSPA and mean errors for U-Turn Test.

OSPA PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s) TSS

JPDA 27.46 991.89 62.57 1012.4 89.91 0.96

EPwCAF 0.60 0.46 3.36 0.37 2.82 0
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Table 4.18: The filtered convergence score and mean errors for U-Turn Test.

score PRMS(m) VRMS(m/s) PMed.(m) VMed.(m/s)

JPDA 0.01 8.37 8.37 4.44 4.44

EPwCAF 1 0.46 0.37 3.36 2.82

pseudo-likelihoods introduced in Chapter 2 have been incorporated into the deriva-

tion process. The performances of the proposed algorithms have been examined by

comparing them to their alternatives in different environments. We have shown that

the proposed smoother significantly improves the estimation results together with the

assignment decisions, and the proposed filter is on par with its alternative. The al-

ternative smoothers suffer from poor initialization, whereas EPwCA smoother has a

greater computational cost.
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Figure 4.4: Example realizations from the tests for each smoother. The ones on the

left and right are examples from Test-3 when K = 4 and U-Turn Test, respectively.

The measurements are shown with dots whose shading gets darker as time progresses.
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Figure 4.5: Example realizations from the tests for each filter. The ones on the left

and right are examples from Test-3 when K = 4 and U-Turn Test, respectively. The

measurements are shown with dots whose shading gets darker as time progresses.
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CHAPTER 5

CONCLUSION

In this thesis, we have addressed the state estimation problem with discrete-valued

hidden random variables in which the optimal Bayesian solution is intractable due to

the exponential increase in computational complexity.

To derive a sub-optimal solution, we investigated the problem in the EP framework,

which can exhibit numerical issues intrinsically, preventing its usage in real-life prob-

lems. To overcome these difficulties and improve its convergence properties, we have

introduced the concept of context adjustment that allows us to control the amount

of information leaking through the cavity distribution in the EP problem. We have

named this novel version of EP with Context Adjustment. Additionally, we have pro-

posed the pseudo-likelihoods as a new form of backward factors in the EP so that

the probabilistic nature of the problem is better reflected in the approximate model.

To this end, we have derived the analytical sub-optimal optimization solution of the

M-projection problem for the first time in the literature, which can also be applica-

ble to other estimation problems as well. During the simulations, we observed that

the proposed novelties have ameliorated the performance of the EP by alleviating

the numerical issues in the problems where standard EP fails to converge. However,

the theoretical analysis of these improvements in the convergence properties of EP

deserves further study.

Using the EPwCA and the new form of backward factors, we have tackled two prob-

lems involving discrete hidden random variables: the state estimation in JMLSs, and

the target tracking problem under the measurement origin uncertainty. Though EP

was considered as an inference method in JMLSs before, those studies lacked a com-

prehensive analysis of performance and failed to present a convergent algorithm. In
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this study, we have derived a fixed-interval smoother based on EPwCA for JMLSs,

which eliminates the convergence problems. Detailed simulations with different sce-

narios have shown that the proposed smoother is either on par with the alternative

methods or surpasses them. Furthermore, we have attained an EP-based filter by

applying the EPwCA on a sliding window, which performed better in challenging

scenarios than the popular filters in the literature.

The second problem we have examined in the framework of EP is the target tracking

problem under the measurement origin uncertainty. To our knowledge, this prob-

lem has not been studied in this framework before this thesis, and we have exploited

the EPwCA to obtain a fixed-interval smoother and its filter extension. We have

conducted a detailed examination of the performance of the proposed algorithms by

changing the scenario parameters and comparing them to their alternatives. We have

observed that both the EPwCA smoother and the EPwCA filter are more robust to

these changes, exhibiting less track coalescence in general and having significantly

lower RMS and median errors. On the other hand, the proposed methods are compu-

tationally expensive to apply in cases with a high number of targets and false alarms.

5.1 Future Work

A list of topics open for further research in the light of this thesis is given below.

• We could provide only empirical evidence obtained from the simulations about

the improved convergence properties of EPwCA compared to standard EP. An

interesting future study direction might involve a theoretical analysis of why

and how the contributions of the current study resulted in improvements in

convergence, which might get us one step closer to fully understanding the

convergence properties of EP and its variants.

• The use of EPwCA in JMLSs can be extended to other applications, such as

the estimation problem in JMLSs as in [51] and clustering [11], that involve

mixtures instead of single Gaussians.

• One can consider investigating the augmented switching linear dynamical sys-
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tems in the framework of EPwCA, in which the transition probabilities depend

on the continuous base state as opposed to the independent transition probabil-

ities in standard JMLSs.

• Our simulations regarding the data association problem were limited to sce-

narios with moderate clutter intensity and a moderate number of targets due

to computational burden. Examining the ways of reducing the computational

complexity that will enable the application of EPwCA to cases with higher

clutter intensity with a larger number of targets is open for further research.

• Finally, one can consider adapting the proposed data association algorithms

to the tracking problems where the number of targets is unknown. To do so,

additional binary-valued hidden random variables that represent the presence

of each target at each time step can be introduced into the probabilistic model,

which would bring further combinatoric challenges to the estimation problem.

77



78



REFERENCES

[1] J. S. Abel, Localization using range differences. PhD thesis, Stanford Univer-

sity, 1989.

[2] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and

Techniques. MIT Press, 2009.

[3] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University Press,

2013.

[4] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to

Tracking and Navigation: Theory Algorithms and Software. John Wiley &

Sons, 2001.

[5] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems.

Artech House, 1999.

[6] T. D. Barfoot, State Estimation for Robotics. Cambridge University Press, 2017.

[7] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45, no. 3,

pp. 52–57, 2002.

[8] J. D. Murray, Mathematical Biology: I. An Introduction. Springer, 2002.

[9] E. Greenberg, Introduction to Bayesian Econometrics. Cambridge University

Press, 2012.

[10] G. Koop, Bayesian Econometrics. John Wiley & Sons, 2003.

[11] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[12] K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press,

2012.

[13] K. P. Murphy, Dynamic Bayesian Networks: Representation, Inference and

Learning. University of California, Berkeley, 2002.

79



[14] P. J. Mosterman and G. Biswas, “Diagnosis of continuous valued systems

in transient operating regions,” IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, vol. 29, no. 6, pp. 554–565, 1999.

[15] K. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation for approxi-

mate inference: An empirical study,” arXiv preprint arXiv:1301.6725, 2013.

[16] T. P. Minka, “Expectation propagation for approximate Bayesian inference,” in

Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelli-

gence, pp. 362–369, 2001.

[17] J. Piger, “Econometrics: Models of regime changes,” in Complex systems in

finance and econometrics, pp. 190–202, Springer, 2009.

[18] V. Pavlovic, J. M. Rehg, and J. MacCormick, “Learning switching linear models

of human motion,” Advances in Neural Information Processing Systems, vol. 13,

2000.

[19] A. T. Cemgil, H. J. Kappen, and D. Barber, “A generative model for music

transcription,” IEEE Transactions on Audio, Speech, and Language Processing,

vol. 14, no. 2, pp. 679–694, 2006.

[20] S. Lacoste-Julien, B. Taskar, D. Klein, and M. Jordan, “Word alignment via

quadratic assignment,” 2006.

[21] M. Kellis, N. Patterson, B. Birren, B. Berger, and E. S. Lander, “Methods in

comparative genomics: genome correspondence, gene identification and reg-

ulatory motif discovery,” Journal of Computational Biology, vol. 11, no. 2-3,

pp. 319–355, 2004.

[22] A. Doucet, A. Smith, N. de Freitas, and N. Gordon, Sequential Monte Carlo

Methods in Practice. Information Science and Statistics, Springer New York,

2001.

[23] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan, “An introduction to

MCMC for machine learning,” Machine Learning, vol. 50, pp. 5–43, Jan 2003.

[24] T. Minka, “Divergence measures and message passing,” tech. rep., Microsoft

Research, Cambridge UK, 2005.

80



[25] C. W. Fox and S. J. Roberts, “A tutorial on variational Bayesian inference,”

Artificial Intelligence Review, vol. 38, no. 2, pp. 85–95, 2012.

[26] J. Winn and C. M. Bishop, “Variational message passing,” Journal of Machine

Learning Research, vol. 6, no. Apr, pp. 661–694, 2005.

[27] T. P. Minka, A family of algorithms for approximate Bayesian inference. PhD

thesis, Massachusetts Institute of Technology, 2001.

[28] D. Hernández-Lobato and J. M. Hernández-Lobato, “Scalable Gaussian process

classification via expectation propagation,” in Artificial Intelligence and Statis-

tics, pp. 168–176, 2016.

[29] T. Bui, D. Hernández-Lobato, J. Hernandez-Lobato, Y. Li, and R. Turner, “Deep

Gaussian processes for regression using approximate expectation propagation,”

in International Conference on Machine Learning, pp. 1472–1481, 2016.

[30] T. Furmston and D. Barber, “Variational methods for reinforcement learning,”

in Proceedings of the Thirteenth International Conference on Artificial Intelli-

gence and Statistics, pp. 241–248, 2010.

[31] Y. Qi and T. P. Minka, “Window-based expectation propagation for adaptive

signal detection in flat-fading channels,” IEEE Transactions on Wireless Com-

munications, vol. 6, no. 1, pp. 348–355, 2007.

[32] J. Céspedes, P. M. Olmos, M. Sánchez-Fernández, and F. Perez-Cruz, “Expec-

tation propagation detection for high-order high-dimensional MIMO systems,”

IEEE Transactions on Communications, vol. 62, no. 8, pp. 2840–2849, 2014.

[33] I. Santos, J. J. Murillo-Fuentes, R. Boloix-Tortosa, E. Arias-de Reyna, and P. M.

Olmos, “Expectation propagation as turbo equalizer in ISI channels,” IEEE

Transactions on Communications, vol. 65, no. 1, pp. 360–370, 2016.

[34] J. Ma, R. Dudeja, J. Xu, A. Maleki, and X. Wang, “Spectral method for phase

retrieval: An expectation propagation perspective,” IEEE Transactions on Infor-

mation Theory, vol. 67, no. 2, pp. 1332–1355, 2021.

81



[35] M. Deisenroth and S. Mohamed, “Expectation propagation in Gaussian pro-

cess dynamical systems,” Advances in Neural Information Processing Systems,

vol. 25, 2012.

[36] A. Vehtari, A. Gelman, T. Sivula, P. Jylänki, D. Tran, S. Sahai, P. Blomstedt, J. P.

Cunningham, D. Schiminovich, and C. P. Robert, “Expectation propagation as a

way of life: A framework for Bayesian inference on partitioned data.,” Journal

of Machine Learning Research, vol. 21, pp. 17–1, 2020.

[37] P. Jylänki, J. Vanhatalo, and A. Vehtari, “Robust Gaussian process regression

with a Student-t likelihood,” Journal of Machine Learning Research, vol. 12,

no. 99, pp. 3227–3257, 2011.

[38] T. P. Minka and J. D. Lafferty, “Expectation-propogation for the generative as-

pect model,” CoRR, vol. abs/1301.0588, 2013.

[39] T. Heskes and O. Zoeter, “Expectation propogation for approximate inference

in dynamic Bayesian networks,” CoRR, vol. abs/1301.0572, 2013.

[40] K. P. Murphy, Probabilistic Machine Learning: Advanced Topics. MIT Press,

2023.

[41] D. Barber, Bayesian Time Series Models, ch. Approximate inference in switch-

ing linear dynamical systems using Gaussian mixtures, pp. 166––181. Cam-

bridge University Press, 2011.

[42] T. Minka, “Power EP,” Tech. Rep. MSR-TR-2004-149, Microsoft Research,

Cambridge UK, Jan. 2004.

[43] X. Rong Li and V. Jilkov, “Survey of maneuvering target tracking. Part V.

Multiple-model methods,” IEEE Transactions on Aerospace and Electronic Sys-

tems, vol. 41, no. 4, pp. 1255–1321, 2005.

[44] C.-B. Chang and M. Athans, “State estimation for discrete systems with switch-

ing parameters,” IEEE Transactions on Aerospace and Electronic Systems, no. 3,

pp. 418–425, 1978.

[45] H. A. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm for

82



systems with Markovian switching coefficients,” IEEE Transactions on Auto-

matic Control, vol. 33, no. 8, pp. 780–783, 1988.

[46] G. Kitagawa, “The two-filter formula for smoothing and an implementation of

the Gaussian-sum smoother,” Annals of the Institute of Statistical Mathematics,

vol. 46, no. 4, pp. 605–623, 1994.

[47] R. Helmick, W. Blair, and S. Hoffman, “Fixed-interval smoothing for Marko-

vian switching systems,” IEEE Transactions on Information Theory, vol. 41,

no. 6, pp. 1845–1855, 1995.

[48] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood estimates of

linear dynamic systems,” AIAA Journal, vol. 3, no. 8, pp. 1445–1450, 1965.

[49] C.-J. Kim, “Dynamic linear models with Markov-switching,” Journal of Econo-

metrics, vol. 60, no. 1-2, pp. 1–22, 1994.

[50] W. Koch, “Fixed-interval retrodiction approach to Bayesian IMM-MHT for ma-

neuvering multiple targets,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 36, no. 1, pp. 2–14, 2000.

[51] D. Barber, “Expectation correction for smoothing in switching linear Gaussian

state space models,” Journal of Machine Learning Research, vol. 7, pp. 2515–

2540, 2006.

[52] N. Nadarajah, R. Tharmarasa, M. McDonald, and T. Kirubarajan, “IMM for-

ward filtering and backward smoothing for maneuvering target tracking,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 48, no. 3, pp. 2673–

2678, 2012.

[53] R. Lopez and P. Danes, “Low-complexity IMM smoothing for jump Markov

nonlinear systems,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 53, no. 3, pp. 1261–1272, 2017.

[54] H. Akashi and H. Kumamoto, “Random sampling approach to state estimation

in switching environments,” Automatica, vol. 13, pp. 429–434, July 1977.

[55] J. Tugnait and A. Haddad, “A detection-estimation scheme for state estimation

in switching environments,” Automatica, vol. 15, pp. 477–481, July 1979.

83



[56] O. Zoeter and T. Heskes, Bayesian Time Series Models, ch. Expectation propa-

gation and generalized EP methods for inference in switching linear dynamical

systems, pp. 141––165. Cambridge University Press, 2011.

[57] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. Part I.

Dynamic models,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 39, no. 4, pp. 1333–1364, 2003.

[58] Y. Ma, S. Zhao, and B. Huang, “Multiple-model state estimation based on vari-

ational Bayesian inference,” IEEE Transactions on Automatic Control, vol. 64,

pp. 1679–1685, Apr. 2019.

[59] L. D. Stone, R. L. Streit, T. L. Corwin, and K. L. Bell, Bayesian Multiple Target

Tracking. Artech House, Dec. 2013.

[60] Y. Bar-Shalom, F. Daum, and J. Huang, “The probabilistic data association fil-

ter,” IEEE Control Systems Magazine, vol. 29, no. 6, pp. 82–100, 2009.

[61] K.-C. Chang and Y. Bar-Shalom, “Joint probabilistic data association for mul-

titarget tracking with possibly unresolved measurements and maneuvers,” IEEE

Transactions on Automatic Control, vol. 29, no. 7, pp. 585–594, 1984.

[62] D. Reid, “An algorithm for tracking multiple targets,” IEEE Transactions on

Automatic Control, vol. 24, no. 6, pp. 843–854, 1979.

[63] R. L. Streit and T. E. Luginbuhl, “Probabilistic multi-hypothesis tracking,” tech.

rep., Naval Underwater Systems Center Newport RI, 1995.

[64] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from

incomplete data via the EM algorithm,” Journal of the Royal Statistical Society:

Series B (Methodological), vol. 39, no. 1, pp. 1–22, 1977.

[65] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood estimates of

linear dynamic systems,” AIAA Journal, vol. 3, no. 8, pp. 1445–1450, 1965.

[66] P. Willett, Y. Ruan, and R. Streit, “PMHT: Problems and some solutions,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 38, no. 3, pp. 738–754,

2002.

84



[67] D. F. Crouse, M. Guerriero, and P. Willett, “A critical look at the PMHT,” Jour-

nal of Advances in Information Fusion, vol. 4, no. 2, pp. 93–116, 2009.

[68] M. Wieneke and W. Koch, “A PMHT approach for extended objects and ob-

ject groups,” IEEE Transactions on Aerospace and Electronic Systems, vol. 48,

no. 3, pp. 2349–2370, 2012.

[69] A. S. Rahmathullah, R. Selvan, and L. Svensson, “A batch algorithm for estimat-

ing trajectories of point targets using expectation maximization,” IEEE Trans-

actions on Signal Processing, vol. 64, no. 18, pp. 4792–4804, 2016.

[70] N. Ueda and R. Nakano, “Deterministic annealing EM algorithm,” Neural net-

works, vol. 11, no. 2, pp. 271–282, 1998.

[71] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 1999.

[72] H. A. Blom and E. A. Bloem, “Combining IMM and JPDA for tracking mul-

tiple maneuvering targets in clutter,” in Proceedings of the Fifth International

Conference on Information Fusion, vol. 1, pp. 705–712, IEEE, 2002.

[73] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for performance

evaluation of multi-object filters,” IEEE Transactions on Signal Processing,

vol. 56, no. 8, pp. 3447–3457, 2008.

85



86



APPENDIX A

M-PROJECTION INVOLVING PSEUDO-LIKELIHOODS

In this appendix, we solve the following minimization problem

{y∗,C∗,R∗} = arg min
{y,C,R}

KL(p(·)||q(·)), (A.1)

where p(·) is an arbitrary probability density function with known mean x̄ and co-

variance P, and the density q(x) is defined as

q(x) ∝N (y;Cx,R)N (x; x̂,P), (A.2)

where y ∈ Rℓ, C ∈ Rℓ×dx and R ∈ Rℓ×ℓ with ℓ ≤ dx are unknowns to be determined,

and the mean x̂ and covariance P are given. We can write q(x) as

q(x) =N (x; x̃, P̃), (A.3)

where

P̃ ≜ (P−1 +CTR−1C)−1, (A.4a)

x̃ ≜ P̃(P−1x̂+CTR−1y). (A.4b)

We assume that C has full row-rank and the matrix R is positive definite. We can

calculate the KL divergence between from q(x) to p(x) as

KL(p(·)||q(·)) +
= −

∫
p(x) logN (x; x̃, P̃)dx (A.5a)

+
=

1

2
log |P̃|+ 1

2
tr(P̃−1P) +

1

2
(x̃− x̄)TP̃−1(·) (A.5b)

where the sign +
= denotes equality up to an additive constant with respect to the opti-

mized variables. The cost function above is denoted in the following as J , i.e.,

J =
1

2
log |P̃|+1

2
tr(P̃−1P) +

1

2
(x̃− x̄)TP̃−1(·), (A.6)

where for the sake of brevity we drop the arguments of the cost.
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A.1 Minimization with respect to the measurement y

We can compute the derivative of the cost (A.6) with respect to the measurement y as

follows.

∂J

∂y
=
∂

∂y
(x̃− x̄)TP̃−1(·), (A.7a)

=
∂

∂y
(P̃(P̃−1x̂+CTR−1y)− x̄)TP̃−1(·), (A.7b)

=2R−1CP̃P̃−1(P̃(P−1x̂+CTR−1y)− x̄), (A.7c)

=2R−1C(P̃(P−1x̂+CTR−1y)− x̄). (A.7d)

Equating the right hand side of (A.7d) to zero, multiplying both sides with R from

the left, and then solving for y would give the optimal measurement y∗ as

y∗ = R
(
CP̃CT

)−1
C
(
x̄− P̃P−1x̂

)
. (A.8)

A.2 Minimization with respect to the measurement noise covariance R

We first substitute y∗ in (A.8) into the quadratic term in J .

(x̃− x̄)TP̃−1(·) = (P̃P−1x̂− x̄+ P̃CTR−1y∗)TP̃−1(·),

=
(
P̃P−1x̂− x̄+ P̃CT(CP̃CT)−1C(x̄− P̃P−1x̂)

)T
P̃−1(·), (A.9a)

=
((
P̃− P̃CT(CP̃CT)−1CP̃

)
(P−1x̂− P̃−1x̄)

)T
P̃−1

(
·
)
. (A.9b)

Applying Theorem 4 in Appendix E on the right hand side of (A.9b) gives(
P̃− P̃CT(CP̃CT)−1CP̃

)
(P−1x̂− P̃−1x̄)

=
(
P̃− P̃(P̃−1 − P̃−1U(UTP̃−1U)−1UTP̃−1)P̃

)
(P−1x̂− P̃−1x̄), (A.10a)

=U(UTP̃−1U)−1UT(P−1x̂− P̃−1x̄) (A.10b)

=U(UTP−1U)−1UTP−1(x̂− x̄) (A.10c)

where U ∈ Rdx×(dx−ℓ) is a matrix such that CU = 0 and the augmented square

matrix [CT P̃−1U] is invertible. The equality (A.10c) is written by using the facts

UTP̃−1U =UTP−1U, UTP̃−1x̄ =UTP−1x̄, (A.11)
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which can be derived from the condition CU = 0. We insert (A.10c) back into (A.9b)

to get(
P̃P−1x̂− x̄+ P̃CTR−1y∗)TP̃−1

(
·
)

=(x̂− x̄)TP−1U(UTP−1U)−1UTP̃−1U(UTP−1U)−1UTP̃−1(·), (A.12a)

=(x̂− x̄)TP−1U(UTP−1U)−1UTP−1(·), (A.12b)

=(x̂− x̄)TP−1(·)− (x̂− x̄)TCT(CPCT)−1C(·), (A.12c)

where we made use of Theorem 4 in Appendix E once again. We observe that (A.12c)

is independent of R, hence only the first two terms of J in (A.6) have to be optimized

with respect to R. Since R is invertible, optimization with respect to R is equivalent

to optimization with respect to R−1. Taking the derivative of the first two terms of J

on the right-hand side of (A.6) with respect to R−1, we get

2
∂J

∂R−1
=
∂ log |P̃|
∂R−1

+
∂tr
(
P̃−1P

)
∂R−1

, (A.13a)

=− ∂ log |P−1 +CTR−1C|
∂R−1

+
∂tr
(
(P−1 +CTR−1C)P

)
∂R−1

, (A.13b)

=− ∂ log |P−1|
∂R−1

− ∂ log |I+P1/2CTR−1CP1/2|
∂R−1

+
∂tr
(
P−1P

)
∂R−1

+
∂tr
(
CTR−1CP

)
∂R−1

(A.13c)

+
=− ∂ log |I+R−1CPCT|

∂R−1
+
∂tr
(
R−1CPCT

)
∂R−1

, (A.13d)

=−CPCT(I+R−1CPCT)−1 +CPCT. (A.13e)

We equate (A.13e) to zero and solve for R−1 to get

I+ (R∗)−1CPCT = (CPCT)−1CPCT, (A.14)

which is equivalent to

(R∗)−1 = (CPCT)−1 − (CPCT)−1. (A.15)

Assuming that the right hand side of (A.15) is invertible, we get

R∗ =
(
(CPCT)−1 − (CPCT)−1

)−1
. (A.16)

Substituting (A.15) into (A.8) results in the following expression for y∗ after tedious

algebra.

y∗ = R∗((CPCT)−1Cx̄− (CPCT)−1Cx̂
)
, (A.17)

a proof of which is given in Appendix G.
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A.3 Minimization with respect to the measurement matrix C

By substituting the result (A.12c) into the cost J in (A.6), we can write

2J
+
= log |P̃|+ tr(P̃−1P)− (x̂− x̄)TCT(CPCT)−1C(·) (A.18a)
+
=− log |I+R−1CPCT|+ tr(R−1CPCT)− (x̂− x̄)TCT(CPCT)−1C(·)

(A.18b)

where we used the definition of P̃ in (A.4a) and the determinant equality

|P̃||CPCT +R| = |P||R|, (A.19)

which implies

|P̃| ∝ |R−1(CPCT +R)|−1 = |I+R−1CPCT|−1. (A.20)

Substituting R← R∗ into (A.18b) we obtain

2J
+
= log |(CPCT)−1CPCT|+ ℓ− tr((CPCT)−1CPCT)

− (x̂− x̄)TCT(CPCT)−1C(·) (A.21)

Unfortunately, it is difficult (if not impossible) to find an analytical solution for C

using the cost function above. Hence we are going to follow a sub-optimal approach

below.

Suppose, for the time being, that C has only a single row, i.e., the measurement y

is a scalar. Note that in this case the measurement covariance R becomes a scalar

as well. Let us then call C as c and R as r in this case. It should be clear from the

cost (A.21) that it is only the direction of c that matters for the optimization and the

scale can be assigned arbitrarily, i.e., the cost for αc is the same as the cost for c for

any α ̸= 0. Hence, we can select c such that cPcT = 1 without loss of generality.

The optimal measurement information (r∗)−1 (i.e., the inverse of the measurement

variance) found in the previous part would then become

(r∗)−1 =
1

cPcT
− 1

cPcT
. (A.22)

We can now try to maximize the information in the measurement by solving the fol-

lowing optimization problem.

c∗ = arg max
cPcT=1

(r∗)−1. (A.23)
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It is now not difficult to see that optimal solution c∗ for this optimization problem

should be transpose of the normalized generalized eigenvector corresponding to the

largest generalized eigenvalue λ∗ for the following generalized eigenvalue problem.

Pei = λiPei, (A.24)

for i = 1, . . . , dx. The optimal value of (r∗)−1 would be

(r∗)−1 =
λ∗ − 1

c∗P(c∗)T
. (A.25)

We see clearly that for the optimal measurement noise variance r to be positive, we

need the largest generalized eigenvalue λ∗ to be larger than unity.1

In view of the analysis above, we propose here to form the measurement matrix C out

of as many linearly independent generalized eigenvectors (for the generalized eigen-

value problem in (A.24)) with generalized eigenvalues larger than unity as possible.

Suppose now that the generalized eigenvalue problem in (A.24) has been solved and

0 ≤ L ≤ dx generalized eigenvalues (repetitions allowed) λi > 1, i = 1, . . . , L, and

the corresponding linearly independent normalized generalized eigenvectors ei have

been found. When we set C as

C ≜
[
e1 e2 · · · eL

]T
, (A.26)

by the properties of the symmetric generalized eigenvalue problem in (A.24), both

CPCT and CPCT are diagonal matrices given as

CPCT =diag(eT1Pe1, . . . , e
T
LPeL), (A.27a)

CPCT =diag
(
eT1Pe1, . . . , e

T
LPeL

)
. (A.27b)

Substituting C in (A.26) into the cost J in (A.21), we get

2J
+
=

L∑
i=1

(
1 + log

eTi Pei
eTi Pei

− eTi Pei
eTi Pei

− (eTi (x̂− x̄))2

eTi Pei

)
(A.28)

Now using the fact that eTi Pei = λie
T
i Pei, which can be derived from (A.24), we get

2J
+
=

L∑
i=1

(
1− log λi −

1

λi
− (eTi (x̂− x̄))2

eTi Pei

)
. (A.29)

1 Note that since the matrices involved in the generalized eigenvalue problem in (A.24) are symmetric and
positive definite, the generalized eigenvalues λi, i = 1, . . . , dx, are all real and positive. Furthermore, the corre-
sponding generalized eigenvectors ei, i = 1, . . . , dx, can be selected to be orthogonal with respect to the inner
product ⟨x,y⟩ ≜ xTPy.
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It turns out that each term in the summation above is non-positive. Hence, each

additional row of C in (A.26) reduces the cost J or keeps it constant. Moreover, if

one desires to use less rows than L, one can always select the generalized eigenvectors

ei (corresponding to λi > 1) with the largest scores si, defined as

si ≜ log λi +
1

λi
+

(eTi (x̂− x̄))2

eTi Pei
, (A.30)

in order to minimize the cost J the most with the allowed number of rows for C.

Substituting C in (A.26) into R∗ in (A.16), and y∗ in (A.17), we obtain

R∗ =diag

(
eT1Pe1
λ1 − 1

, . . . ,
eTLPeL
λL − 1

)
, (A.31a)

y∗ =
[

eT1 (λ1x̄−x̂)

λ1−1
· · · eTL(λLx̄−x̂)

λL−1

]T
, (A.31b)

where it should be clear that R∗ > 0 when λi > 1 for i = 1, . . . , L.
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APPENDIX B

DERIVATIONS USED IN THE FACTOR UPDATES IN JMLS

B.1 Derivations for the Forward Factor, ρfn(xn, rn)

When γfn > 0, the tilted density ψ̄f
n(xn, rn) in (3.13a) can be written as follows.

ψ̄f
n(xn, rn) ∝

[
πb,rn
n N

(
yb,rn
n ;Cb,rn

n xn,R
b,rn
n

)]γf
n N (yn;C

rn
n xn,R

rn
n )

×
∑
rn−1

∫
xn−1

[
πrn
rn−1

α
f,rn−1

n−1 N (xn;A
rn
n xn−1,Q

rn
n )

×N
(
xn−1;m

f,rn−1

n−1 ,P
f,rn−1

n−1

)]
, (B.1a)

∝(πb,rn
n )γ

f
n |Rb,rn

n |
1−γ

f
n

2 N
(
yb,rn
n ;Cb,rn

n xn,
Rb,rn

n

γfn

)
N (yn;C

rn
n xn,R

rn
n )

×
∑
rn−1

[
πrn
rn−1

α
f,rn−1

n−1 N
(
xn;m

f,rn
n,rn−1

,Pf,rn
n,rn−1

)]
, (B.1b)

where

mf,rn
n,rn−1

≜Arn
n m

f,rn−1

n−1 (B.2a)

Pf,rn
n,rn−1

≜Arn
n P

f,rn−1

n−1 (Arn
n )T +Qrn

n . (B.2b)

We now define the augmented quantities below.

ȳrn
n ≜

[
yT
n (yb,rn

n )T
]T
, (B.3a)

C
rn
n ≜

[
(Crn

n )T (Cb,rn
n )T

]T
, (B.3b)

R
rn
n ≜

 Rrn
n 0

0 1

γf
n
Rb,rn

n

 , (B.3c)

which enables us to write

ψ̄f
n(xn, rn) ∝(πb,rn

n )γ
f
n |Rb,rn

n |
1−γ

f
n

2 N
(
ȳrn
n ;C

rn
n xn,R

rn
n

)∑
rn−1

[
πrn
rn−1

α
f,rn−1

n−1
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×N (xn;m
f,rn
n,rn−1

,Pf,rn
n,rn−1

)
]
, (B.4a)

=
∑
rn−1

β̄f,rn
n,rn−1

N (xn;v
f,rn
n,rn−1

,Vf,rn
n,rn−1

), (B.4b)

=β̄f,rn
n

∑
rn−1

βf,rn
n,rn−1

N (xn;v
f,rn
n,rn−1

,Vf,rn
n,rn−1

), (B.4c)

where

β̄f,rn
n ≜

∑
rn−1

β̄f,rn
n,rn−1

(B.5a)

βf,rn
n,rn−1

≜β̄f,rn
n,rn−1

/β̄f,rn
n , (B.5b)

β̄f,rn
n,rn−1

≜(πb,rn
n )γ

f
n |Rb,rn

n |
1−γ

f
n

2 α
f,rn−1

n−1 πrn
rn−1
N
(
ȳrn
n ;C

rn
n mf,rn

n,rn−1
,Sf,rn

n,rn−1

)
, (B.5c)

Sf,rn
n,rn−1

≜C
rn
n Pf,rn

n,rn−1
(C

rn
n )T +R

rn
n , (B.5d)

Vf,rn
n,rn−1

≜
(
(Pf,rn

n,rn−1
)−1 + (C

rn
n )T(R

rn
n )−1C

rn
n

)−1
, (B.5e)

vf,rn
n,rn−1

≜Vf,rn
n,rn−1

(
(Pf,rn

n,rn−1
)−1mf,rn

n,rn−1
+ (C

rn
n )T(R

rn
n )−1ȳrn

n

)
. (B.5f)

When γfn > 0, the density ψf
n(xn, rn) in (3.13b) is given as

ψf
n(xn, rn) ∝(πb,rn

n )γ
f
n |Rb,rn

n |
1−γ

f
n

2 αf,rn
n N

(
yb,rn
n ;Cb,rn

n xn,
Rb,rn

n

γfn

)
×N (xn;m

f,rn
n ,Pf,rn

n ), (B.6a)

=βf,rn
n αf,rn

n N (xn,v
f,rn
n ,Vf,rn

n ), (B.6b)

where

βf,rn
n ≜ (πb,rn

n )γ
f
n |Rb,rn

n |
1−γ

f
n

2 N
(
yb,rn
n ;Cb,rn

n mf,rn
n ,Sf,rn

n

)
, (B.7a)

Sf,rn
n ≜Cb,rn

n Pf,rn
n (Cb,rn

n )T +
Rb,rn

n

γfn
, (B.7b)

Vf,rn
n ≜

(
(Pf,rn

n )−1 + γfn(C
b,rn
n )T(Rb,rn

n )−1Cb,rn
n

)−1
, (B.7c)

vf,rn
n ≜Vf,rn

n

(
(Pf,rn

n )−1mf,rn
n + γfn(C

b,rn
n )T(Rb,rn

n )−1yb,rn
n

)
. (B.7d)

When γfn = 0, the tilted density ψ̄f
n(·, ·) in (3.13a) turns out to be in the same form

as (B.4c) with the parameters between (B.5c)–(B.5f) replaced with the following.

β̄f,rn
n,rn−1

≜α
f,rn−1

n−1 πrn
rn−1
N (yn;C

rn
n mf,rn

n,rn−1
,Sf,rn

n,rn−1
), (B.8a)

Sf,rn
n,rn−1

≜Crn
n Pf,rn

n,rn−1
(Crn

n )T +Rrn
n (B.8b)

Vf,rn
n,rn−1

≜
(
(Pf,rn

n,rn−1
)−1 + (Crn

n )T(Rrn
n )−1Crn

n

)−1
, (B.8c)
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vf,rn
n,rn−1

≜Vf,rn
n,rn−1

(
(Pf,rn

n,rn−1
)−1mf,rn

n,rn−1
+ (Crn

n )T(Rrn
n )−1yn

)
. (B.8d)

When γfn = 0, the density ψf
n(xn, rn) in (3.13b) becomes

ψf
n(xn, rn) = ρfn(xn, rn) = αf

n,rn N (xn;m
f,rn
n ,Pf,rn

n ) (B.9)

B.2 Derivations for the Backward Factor qbn(xn, rn)

When γbn > 0, the tilted density ψ̄b
n(xn, rn) in (3.18a) can be written as follows.

ψ̄b
n(xn, rn) ∝

[
αf,rn
n N (xn;m

f,rn
n ,Pf,rn

n )
]γb

n
∑
rn+1

∫
xn+1

[
πrn+1
rn π

b,rn+1

n+1

×N (xn+1;A
rn+1

n+1 xn,Q
rn+1

n+1 )N (ȳ
rn+1

n+1 ;C
rn+1

n+1 xn+1,R
rn+1

n+1 )
]

(B.10a)

∝
∑
rn+1

[
(αf,rn

n )γ
b
nπrn+1

rn π
b,rn+1

n+1

∣∣Pf,rn
n

∣∣ 1−γbn
2 N

(
xn;m

f,rn
n ,

Pf,rn
n

γbn

)
×N (ȳ

rn+1

n+1 ;C
rn+1

n+1 A
rn+1

n+1 xn,S
b,rn+1

n+1 )
]

(B.10b)

=β̄b,rn
n

∑
rn+1

βb,rn+1
n,rn N (xn;v

b,rn+1
n,rn ,Vb,rn+1

n,rn ) (B.10c)

where the augmented quantities ȳrn+1

n+1 , C
rn+1

n+1 , R
rn+1

n+1 are the same as those defined in

(B.3) except that one needs to set γfn+1 = 1 in R
rn+1

n+1 and we have

S
b,rn+1

n+1 ≜C
rn+1

n+1 Q
rn+1

n+1 (C
rn+1

n+1 )
T +R

rn+1

n+1 , (B.11a)

β̄b,rn
n ≜

∑
rn+1

β̄b,rn+1
n,rn (B.11b)

βb,rn+1
n,rn ≜β̄b,rn+1

n,rn /β̄b,rn
n (B.11c)

β̄b,rn+1
n,rn ≜(αf,rn

n )γ
b
nπrn+1

rn π
b,rn+1

n+1

∣∣Pf,rn
n

∣∣ 1−γbn
2 N (ȳ

rn+1

n+1 ;C
rn+1

n+1 A
rn+1

n+1 m
f,rn
n ,S

rn+1

n+1 ),

(B.11d)

S
b,rn+1

n+1 ≜S
b,rn+1

n+1 +C
rn+1

n+1 A
rn+1

n+1

Pf,rn
n

γbn
(C

rn+1

n+1 A
rn+1

n+1 )
T, (B.11e)

Vb,rn+1
n,rn ≜

(
γbn(P

f,rn
n )−1 + (C

rn+1

n+1 A
rn+1

n+1 )
T(S

b,rn+1

n+1 )−1C
rn+1

n+1 A
rn+1

n+1

)−1
, (B.11f)

vb,rn+1
n,rn ≜Vb,rn+1

n,rn

(
γbn(P

f,rn
n )−1mf,rn

n + (C
rn+1

n+1 A
rn+1

n+1 )
T(S

b,rn+1

n+1 )−1ȳ
rn+1

n+1

)−1
.

(B.11g)

The density ψb
n(xn, rn) in (3.18b) is given as

ψb
n(xn, rn) ∝πb,rn

n N (yb,rn
n ;Cb,rn

n xn,R
b,rn
n )

[
αf,rn
n N (xn;m

f,rn
n ,Pf,rn

n )
]γb

n (B.12a)
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∝(αf,rn
n )γ

b
nπb,rn

n |Pf,rn
n |

1−γbn
2 N

(
yb,rn
n ;Cb,rn

n xn,R
b,rn
n

)
×N

(
xn;m

f,rn
n ,

Pf,rn
n

γbn

)
(B.12b)

∝ βb,rn
n πb,rn

n N (xn;v
b,rn
n Vb,rn

n ), (B.12c)

where

βb,rn
n =(αf,rn

n )γ
b
n|Pf,rn

n |
1−γbn

2 N
(
yb,rn
n ;Cb,rn

n mf,rn
n ,Sb,rn

n

)
, (B.13a)

Sb,rn
n ≜Cb,rn

n

Pf,rn
n

γbn
(Cb,rn

n )T +Rb,rn
n , (B.13b)

Vb,rn
n =

(
γbn(P

f,rn
n )−1 + (Cb,rn

n )T(Rb,rn
n )−1Cb,rn

n

)−1
, (B.13c)

vb,rn
n =Vb,rn

n

(
γbn(P

f,rn
n )−1mf,rn

n + (Cb,rn
n )T(Rb,rn

n )−1yb,rn
n

)
. (B.13d)
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APPENDIX C

DERIVATIONS USED IN THE FACTOR UPDATES FOR TARGET

TRACKING UNDER MEASUREMENT ORIGIN UNCERTAINTY

C.1 Update of the Forward Factor qfn(Xn, rn)

When γfn > 0, we rewrite the tilted density in (4.19a) using the definitions in (4.16)

as

ψ̄f
n(Xn, rn) ∝

[
N
(
yb
n;C

b
nXn,R

b
n

)]γf
n
p(Yn | Xn, rn)p(rn)

∑
rn−1

∫
Xn−1

[
α
f,rn−1

n−1

×N (Xn;AXn−1,Q)N (Xn−1;m
f,rn−1

n−1 ,P
f,rn−1

n−1 )
]
, (C.1a)

∝|R|
1−γ

f
n

2 N
(
yb
n;C

b
nXn,

Rb
n

γfn

)
p(Yn | Xn, rn)p(rn)

×
∑
rn−1

[
α
f,rn−1

n−1 N (Xn;m
f,rn−1
n,rn ,Pf,rn−1

n,rn )
]
, (C.1b)

where

mf,rn−1
n,rn ≜Am

f,rn−1

n−1 , (C.2a)

Pf,rn−1
n,rn ≜AP

f,rn−1

n−1 A
T
+Q. (C.2b)

We again form the augmented quantities which are defined below,

yrn
n ≜

[ (
yb
n

)T (
yrn,1
n

)T · · ·
(
yrn,K
n

)T ] ,T (C.3a)

yrn,k
n ≜

 [ ], rkn = 0

y
rkn
n , rkn ̸= 0

, (C.3b)

C
rn
n ≜

[ (
Cb

n

)T (
C

rn,1

n

)T · · ·
(
C

rn,K

n

)T ]T , (C.3c)

C
rn,k

n ≜

 [ ], rkn = 0[
01×(k−1)·dx C 01×(K−k)·dx

]
, rkn ̸= 0

, (C.3d)
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R
rn
n ≜blkdiag

[
1

γf
n
Rb

n, R
rn,1

n , · · · , R
rn,K

n

]
, (C.3e)

R
rn,k

n ≜

 [ ], rkn = 0

R, rkn ̸= 0
, (C.3f)

so that we can write

ψ̄f
n(Xn, rn) ∝|Rb

n|
1−γ

f
n

2 N
(
ȳrn
n ;C

rn
n Xn,R

rn
n

)
p(rn)

∑
rn−1

[
α
f,rn−1

n−1

×N (Xn;m
f,rn
n,rn−1

,Pf,rn
n,rn−1

)
]
, (C.4a)

=
∑
rn−1

β̄f,rn
n,rn−1

N (Xn;v
f,rn
n,rn−1

,Vf,rn
n,rn−1

), (C.4b)

=β̄f,rn
n

∑
rn−1

βf,rn
n,rn−1

N (Xn;v
f,rn
n,rn−1

,Vf,rn
n,rn−1

) (C.4c)

≈ β̄f,rn
n N (Xn, v̄

f,rn
n ,V

f,rn
n ), (C.4d)

where

β̄f,rn
n ≜

∑
rn−1

β̄f,rn
n,rn−1

(C.5a)

βf,rn
n,rn−1

≜β̄f,rn
n,rn−1

/β̄f,rn
n , (C.5b)

Sf,rn
n,rn−1

≜C
rn
n Pf,rn

n,rn−1
(C

rn
n )T +R

rn
n , (C.5c)

β̄f,rn
n,rn−1

≜|Rb
n|

1−γ
f
n

2 α
f,rn−1

n−1 p(rn)N
(
ȳrn
n ;C

rn
n mf,rn

n,rn−1
,Sf,rn

n,rn−1

)
, (C.5d)

Vf,rn
n,rn−1

≜
(
(Pf,rn

n,rn−1
)−1 + (C

rn
n )T(R

rn
n )−1C

rn
n

)−1
, (C.5e)

vf,rn
n,rn−1

≜Vf,rn
n,rn−1

(
(Pf,rn

n,rn−1
)−1mf,rn

n,rn−1
+ (C

rn
n )T(R

rn
n )−1ȳrn

n

)
(C.5f)

v̄f,rn
n ≜

∑
rn−1

βf,rn
n,rn−1

vf,rn
n,rn−1

, (C.5g)

V
f,rn
n ≜

∑
rn−1

βf,rn
n,rn−1

[
Vf,rn

n,rn−1
+ (vf,rn

n,rn−1
− v̄f,rn

n )(·)T
]
. (C.5h)

The density, ψf
n(Xn, rn) in (4.19b) is written for γfn > 0 as

ψf
n(Xn, rn) ∝|Rb

n|
1−γ

f
n

2 αf,rn
n N

(
yb
n;C

b
nxn,

Rb
n

γfn

)
N (Xn;m

f,rn
n ,Pf,rn

n ), (C.6a)

=βf,rn
n αf,rn

n N (Xn,v
f,rn
n ,Vf,rn

n ), (C.6b)

where

βf,rn
n ≜ |Rb

n|
1−γ

f
n

2 p(rn)N
(
yb
n;C

b
nm

f,rn
n ,Sf,rn

n

)
, (C.7a)
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Sf,rn
n ≜Cb

nP
f,rn
n (Cb

n)
T +

Rb
n

γfn
, (C.7b)

Vf,rn
n ≜

(
(Pf,rn

n )−1 + γfn(C
b
n)

T(Rb
n)

−1Cb
n

)−1
, (C.7c)

vf,rn
n ≜Vf,rn

n

(
(Pf,rn

n )−1mf,rn
n + γfn(C

b
n)

T(Rb
n)

−1yb
n

)
. (C.7d)

When γfn = 0 and rkn ̸= 0 ∃k, the derivation procedure for the tilted density ψf
n(·, ·)

remains the same except that the parameters of the backward factor vanish from the

augmented quantities in (C.3) as follows.

yrn
n ≜

[ (
yrn,1
n

)T · · ·
(
yrn,K
n

)T ]T , (C.8a)

C
rn
n ≜

[ (
C

rn,1

n

)T · · ·
(
C

rn,K

n

)T ]T , (C.8b)

R
rn
n ≜blkdiag

[
R

rn,1

n , · · · , R
rn,K

n

]
. (C.8c)

If γfn = 0 and rkn = 0 ∀k, then we replace the parameters in between (C.5d)–(C.5f)

as

β̄f,rn
n,rn−1

≜αf,rn−1

n−1 (1− PD)
KβFA

K (C.9a)

Vf,rn
n,rn−1

≜Pf,rn
n,rn−1

)−1, (C.9b)

vf,rn
n,rn−1

≜mf,rn
n,rn−1

. (C.9c)

When γfn = 0, the density ψf
n(Xn, rn) turns out to be simply

ψf
n(Xn, rn) = ρfn(Xn, rn) = αf,rn

n N (Xn;m
f,rn
n ,Pf,rn

n ). (C.10)

Due to the absence of a backward factor in this case, the solution to the M-projection

problem becomes

Pf,rn
n ≜V

f,rn
n , (C.11a)

mf,rn
n ≜vf,rn

n , (C.11b)

αf,rn
n ≜β

f,rn
n . (C.11c)

C.2 Update of the Backward Factor qbn(Xn)

We write the tilted density, ψ̄b
n(Xn) for γbn > 0 and rkn ̸= 0, ∃k as

ψ̄b
n(Xn) ∝

∑
rn

[
αf,rn
n N (Xn;m

f,rn
n ,Pf,rn

n )
]γb

n
∑
rn+1

∫
Xn+1

[
N (Xn+1;AXn,Q)

99



×N (ȳ
rn+1

n+1 ;C
rn+1

n+1 xn+1,R
rn+1

n+1 )p(rn+1)
]

(C.12a)

∝
∑
rn

∑
rn+1

[
(αf,rn

n )γ
b
n
∣∣Pf,rn

n

∣∣ 1−γbn
2 p(rn+1)N

(
Xn;m

f,rn
n ,

Pf,rn
n

γbn

)
×N (ȳ

rn+1

n+1 ;C
rn+1

n+1 AXn,S
b,rn+1

n+1 )
]

(C.12b)

=β̄b
n

∑
rn

∑
rn+1

βb,rn+1
n,rn N (Xn;v

b,rn+1
n,rn ,Vb,rn+1

n,rn ) (C.12c)

∝N (Xn; v̄
b
n,V

b

n) (C.12d)

where the augmented quantities ȳrn+1

n+1 , C
rn+1

n+1 , R
rn+1

n+1 are as in (C.3) and

S
b,rn+1

n+1 ≜C
rn+1

n+1 Q(C
rn+1

n+1 )
T +R

rn+1

n+1 , (C.13a)

β̄b
n ≜

∑
rn

∑
rn+1

β̄b,rn+1
n,rn (C.13b)

βb,rn+1
n,rn ≜β̄b,rn+1

n,rn /β̄b
n (C.13c)

β̄b,rn+1
n,rn ≜(αf,rn

n )γ
b
n
∣∣Pf,rn

n

∣∣ 1−γbn
2

∏
0≤k≤K
0<rkn

N (ȳ
rn+1

n+1 ;C
rn+1

n+1 Amf,rn
n ,S

rn+1

n+1 )

×
∏

1≤j≤mn
0≤k≤K
rkn ̸=j

1

V
, (C.13d)

S
b,rn+1

n+1 ≜S
b,rn+1

n+1 +C
rn+1

n+1 A
Pf,rn

n

γbn
(C

rn+1

n+1 A)T, (C.13e)

Vb,rn+1
n,rn ≜

(
γbn(P

f,rn
n )−1 + (C

rn+1

n+1 A)T(S
b,rn+1

n+1 )−1C
rn+1

n+1 A
)−1

, (C.13f)

vb,rn+1
n,rn ≜Vb,rn+1

n,rn

(
γbn(P

f,rn
n )−1mf,rn

n + (C
rn+1

n+1 A)T(S
b,rn+1

n+1 )−1ȳ
rn+1

n+1

)−1
, (C.13g)

vb
n ≜

∑
rn

∑
rn+1

β
b,rn+1

n,rn vb,rn+1
n,rn , (C.13h)

V
b

n ≜
∑
rn+1

∑
rn+1

β
b,rn+1

n,rn

(
Vb,rn+1

n,rn + (vb,rn+1
n,rn − vb

n)(v
b,rn+1
n,rn − vb

n)
T
)
. (C.13i)

Note that when ψ̄b
n(Xn) = 1 and rkn = 0 ∀k, (C.16f) and (C.16g) changes to

Vb,rn+1
n,rn =

Pb,rn
n

γfn
, (C.14a)

vb,rn+1
n,rn =mb,rn

n . (C.14b)

We write the tilted density, ψ̄b
n(Xn) for γbn > 0and rkn ̸= 0, ∃k as

ψ̄b
n(Xn) ∝

∑
rn

[
αf,rn
n N (Xn;m

f,rn
n ,Pf,rn

n )
]γb

n
∑
rn+1

∫
Xn+1

[
N (Xn+1;AXn,Q)
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×N (ȳ
rn+1

n+1 ;C
rn+1

n+1 xn+1,R
rn+1

n+1 )p(rn+1)
]

(C.15a)

∝
∑
rn

∑
rn+1

[
(αf,rn

n )γ
b
n
∣∣Pf,rn

n

∣∣ 1−γbn
2 p(rn+1)N

(
Xn;m

f,rn
n ,

Pf,rn
n

γbn

)
×N (ȳ

rn+1

n+1 ;C
rn+1

n+1 AXn,S
b,rn+1

n+1 )
]

(C.15b)

=β̄b
n

∑
rn

∑
rn+1

βb,rn+1
n,rn N (Xn;v

b,rn+1
n,rn ,Vb,rn+1

n,rn ) (C.15c)

∝N (Xn; v̄n,Vn) (C.15d)

where the augmented quantities ȳrn+1

n+1 , C
rn+1

n+1 , R
rn+1

n+1 are as in (C.3) and

S
b,rn+1

n+1 ≜C
rn+1

n+1 Q(C
rn+1

n+1 )
T +R

rn+1

n+1 , (C.16a)

β̄b
n ≜

∑
rn

∑
rn+1

β̄b,rn+1
n,rn (C.16b)

βb,rn+1
n,rn ≜β̄b,rn+1

n,rn /β̄b
n (C.16c)

β̄b,rn+1
n,rn ≜(αf,rn

n )γ
b
n
∣∣Pf,rn

n

∣∣ 1−γbn
2

∏
0≤k≤K
0<rkn

N (ȳ
rn+1

n+1 ;C
rn+1

n+1 Amf,rn
n ,S

rn+1

n+1 )

×
∏

1≤j≤mn
0≤k≤K
rkn ̸=j

1

V
, (C.16d)

S
b,rn+1

n+1 ≜S
b,rn+1

n+1 +C
rn+1

n+1 A
Pf,rn

n

γbn
(C

rn+1

n+1 A)T, (C.16e)

Vb,rn+1
n,rn ≜

(
γbn(P

f,rn
n )−1 + (C

rn+1

n+1 A)T(S
b,rn+1

n+1 )−1C
rn+1

n+1 A
)−1

, (C.16f)

vb,rn+1
n,rn ≜Vb,rn+1

n,rn

(
γbn(P

f,rn
n )−1mf,rn

n + (C
rn+1

n+1 A)T(S
b,rn+1

n+1 )−1ȳ
rn+1

n+1

)−1
, (C.16g)

vb
n ≜

∑
rn

∑
rn+1

β
b,rn+1

n,rn vb,rn+1
n,rn , (C.16h)

V
b

n ≜
∑
rn+1

∑
rn+1

β
b,rn+1

n,rn

(
Vb,rn+1

n,rn + (vb,rn+1
n,rn − vb

n)(v
b,rn+1
n,rn − vb

n)
T
)
. (C.16i)

Note that when ψ̄b
n(Xn) = 1 and rkn = 0 ∀k, (C.16f) and (C.16g) changes to

Vb,rn+1
n,rn =

Pb,rn
n

γfn
, (C.17a)

vb,rn+1
n,rn =mb,rn

n . (C.17b)

The density ψb
n(Xn) is written as

ψb
n(Xn) ∝N (yb

n;C
b
nXn,R

b
n)
∑
rn

[
αf,rn
n N (Xn;m

f,rn
n ,Pf,rn

n )
]γb

n (C.18a)
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∝N (yb
n;C

b
nXn,R

b
n)
∑
rn

[
(αf,rn

n )γ
b
n|Pf,rn

n |
1−γbn

2

×N
(
Xn;m

f,rn
n ,

Pf,rn
n

γbn

)]
(C.18b)

∝ N (yb
n;C

b
nXn,R

b
n)N (Xn;v

b
n,V

b
n), (C.18c)

where

βb,rn
n =

(αf,rn
n )γ

b
n|Pf,rn

n |
1−γbn

2∑
rn
(αf,rn

n )γb
n|Pf,rn

n |
1−γbn

2

, (C.19a)

vb
n ≜

∑
rn

βb,rn
n mf,rn

n , (C.19b)

Vb
n ≜

∑
rn

βb,rn
n

(
Pf,rn

n

γbn
+ (mf,rn

n − vb
n)(m

f,rn
n − vb

n)
T

)
. (C.19c)
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APPENDIX D

GAUSSIAN IDENTITIES

D.1 Gaussian Algebra

Lemma 1 Given two Gaussian densities N (x;µa,Σa) and N (x;µb,Σb), their

product is

N (x;µa,Σa)N (x; ,µb,Σb) =cN (x; µ̂, Σ̂) (D.1)

where

c =N (µa;µb,Σa +Σb), (D.2a)

µ̂ =Σ̂
−1
(Σ−1

a µa +Σ−1
b µb)

−1, (D.2b)

Σ̂ =(Σ−1
a +Σ−1

b )−1. (D.2c)

Lemma 2 If random variables x ∈ Rdx and y ∈ Rdy have the Gaussian probability

distributions

x ∼N (x;m,P), (D.3)

y | x ∼N (y;Cx,R), (D.4)

then the joint distribution of x, y and the marginal distribution of y are given as x

y

 ∼N
 x

y

 ;

 m

Cm

 ,

 P PCT

CP CPCT +R

 , (D.5)

y ∼N (y;Cm,CPCT +R). (D.6)
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D.2 Moment Matching between a Mixture of Scaled Gaussians and a Scaled

Gaussian

Lemma 3 Consider the joint density p(x, r) defined as

p(x, r) ≜
∑
i

β̄r
i N (x;µr

i ,Σ
r
i ) (D.7)

for x ∈ Rd and r ∈ {1, . . . , R} where β̄r
i ≥ 0 and

∑
i

∑
r β̄

r
i = 1. The solution of

the optimization problem

{πr∗,µr∗,Σr∗}Rr=1 = arg min
{πr,µr,Σr}Rr=1

KL(p(·, ·)||q(·, ·)), (D.8)

where

q(x, r) ≜ πrN (x;µr,Σr), (D.9)

is given as

πr∗ =β̄r, (D.10a)

µr∗ =
∑
i

βr
iµ

r
i , (D.10b)

Σr∗ =
∑
i

βr
i (Σ

r
i + (µr

i − µr∗)(µr
i − µr∗)), (D.10c)

where

β̄r ≜
∑
i

β̄r
i , βr

i ≜β̄r
i /β̄

r. (D.11)
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APPENDIX E

ABEL’S THEOREM [1]

Theorem 4 (Abel’s Theorem [1, p. 53]) Let C ∈ Rℓ×d, U ∈ Rd×(d−ℓ) be two matri-

ces satisfying CU = 0 and let P ∈ Rd×d be a positive definite matrix. We also assume

that C is full row-rank and the augmented square matrix
[
CT P -1U

]
∈ Rd×d is

full rank and hence invertible. Then,

CT(CPCT) -1C = P -1−P -1U(UTP -1U) -1UTP -1 . (E.1)
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APPENDIX F

PROOF OF (3.9) AND (3.10)

The factor ρfn(xn, rn) defined in (3.7) can be written as follows.

ρfn(xn, rn) ∝ qf,rnn (xn, rn)p(yn | xn, rn), (F.1a)

=πf,rn
n exp

(
− 1

2
(xn − µf,rn

n )TΦf,rn
n (·)

)
N (yn;C

rn
n xn,R

rn
n ), (F.1b)

=πf,rn
n exp

(
− 1

2
(xn − µf,rn

n )TΦf,rn
n (·)

)
× 1√

|2πRrn
n |

exp

(
− 1

2
(yn −Crn

n xn)
T(Rrn

n )−1(·)
)
, (F.1c)

=
πf,rn
n√
|2πRrn

n |
exp

(
− 1

2

(
yT
n (R

rn
n )−1yn + (µf,rn

n )TΦf,rn
n µf,rn

n

))
× exp

(
− 1

2

(
xT
n

(
Φf,rn

n + (Crn
n )T(Rrn

n )−1Crn
n

)
xn

− 2xT
n

(
Φf,rn

n µf,rn
n + (Crn

n )T(Rrn
n )−1yn

)))
, (F.1d)

=
πf,rn
n√
|2πRrn

n |
exp

(
− 1

2

(
yT
n (R

rn
n )−1yn + (µf,rn

n )TΦf,rn
n µf,rn

n

))
× exp

(
− 1

2

(
xT
n (P

f,rn
n )−1xn − 2xT

n (P
f,rn
n )−1mf,rn

n

))
, (F.1e)

=
πf,rn
n√
|2πRrn

n |
exp

(
− 1

2

(
yT
n (R

rn
n )−1yn + (µf,rn

n )TΦf,rn
n µf,rn

n

− (mf,rn
n )T(Pf,rn

n )−1mf,rn
n

))
× exp

(
− 1

2
(xn −mf,rn

n )T(Pf,rn
n )−1(·)

)
, (F.1f)

=
πf,rn
n

√
|2πPf,rn

n |√
|2πRrn

n |
exp

(
− 1

2

(
yT
n (R

rn
n )−1yn + (µf,rn

n )TΦf,rn
n µf,rn

n
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− (mf,rn
n )T(Pf,rn

n )−1mf,rn
n

))
N (xn;m

f,rn
n ,Pf,rn

n ), (F.1g)

∝αf,rn
n N (xn;m

f,rn
n ,Pf,rn

n ), (F.1h)

which is (3.9), where αf,rn
n , mf,rn

n and Pf,rn
n are given in (3.10).
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APPENDIX G

PROOF OF (A.17)

The expression for y∗ in (A.8) can be written as

y∗ = R
(
CP̃CT

)−1(
Cx̄−CP̃P−1x̂

)
. (G.1)

We can rewrite P̃ in (A.4a) in covariance form as

P̃ = P−PCT(CPCT +R)−1CP. (G.2)

Based on this, we can find the terms CP̃CT and CP̃P−1 as follows.

CP̃CT =CPCT −CPCT(CPCT +R)−1CPCT, (G.3a)

=
(
(CPCT)−1 +R−1

)−1
, (G.3b)

=
(
(CPCT)−1

)−1
, (G.3c)

=CPCT, (G.3d)

CP̃P−1 =C
(
P−PCT(CPCT +R)−1CP

)
P−1, (G.3e)

=
(
I−CPCT(CPCT +R)−1

)
C, (G.3f)

=R(CPCT +R)−1C, (G.3g)

=(CPCTR−1 + I)−1C, (G.3h)

=(CPCT(CPCT)−1 − I+ I)−1C, (G.3i)

=CPCT(CPCT)−1C, (G.3j)

where we substituted (R∗)−1 in (A.15) for R−1 twice. Substituting the results in (G.3)

back into (G.1), we get

y∗ =R∗(CPCT
)−1(

Cx̄− (CPCT)(CPCT)−1Cx̂
)
, (G.4a)

=R∗((CPCT
)−1

Cx̄− (CPCT)−1Cx̂
)
, (G.4b)

which is the same as (A.17).
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APPENDIX H

PROOF OF (A.19)

We obtain this determinant identity from the following well-known identity about

the Gaussian distributions which is, in a sense, the basis of Kalman filter update

expressions.

N (y;Cx̂,CPCT +R)N (x; x̃, P̃) = N (y;Cx,R)N (x; x̂,P). (H.1)

Gaussian distributions above have the scaling terms |2π(CPCT+R)|−1/2, |2πP̃|−1/2,

|2πR|−1/2 and |2πP|−1/2. Equating these scaling terms on both sides would give

|2πP̃|−1/2|2π(CPCT +R)|−1/2 = |2πP|−1/2|2πR|−1/2, (H.2)

which is equivalent to

|P̃||CPCT +R| = |P||R|. (H.3)

The reviewer is right that the RHS should be the determinant of the matrix P PCT

CP R+CPCT

 but the determinant of this matrix is exactly equal to |P||R|.

We can here use the following identity for the determinant of a block partitioned

matrix. ∣∣∣∣∣∣
 A B

C D

∣∣∣∣∣∣ = |A||D−CA−1B| (H.4)

whenever A is invertible. If we apply this to the aforementioned matrix, we get∣∣∣∣∣∣
 P PCT

CP R+CPCT

∣∣∣∣∣∣ = |P||R+CPCT −CPP−1PCT| (H.5a)

= |P||R+CPCT −CPCT| (H.5b)

= |P||R|. (H.5c)
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EDUCATION

Degree Institution Year of Graduation

M.S. Middle East Technical University 2015

B.S. Middle East Technical University 2012

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2021-Present ROMER - METU Lecturer

2012-2021 Middle East Technical University Research/ Teaching Assistant

PUBLICATIONS
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1. E. Sarıtaş, U. Orguner, “A Random Matrix Measurement Update Using Taylor-

Series Approximations", International Conference on Information Fusion (FU-

113



SION), Cambridge, 2018.
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3. S. Özgen, ¨ E. Sarıtaş, U. Orguner, and D. Acar, “Delay estimation based on

kinematic track information without time stamps”, Signal Processing and Com-

munications Applications Conference (SIU), Trabzon, 2014.

114


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Main Contributions
	Outline of the Thesis

	Expectation Propagation with Context Adjustment
	Introduction
	Variational Inference
	Expectation Propagation
	Idea of Context Adjustment
	Related Ideas in the Literature

	M-Projection with Pseudo-Likelihoods
	Summary of the Chapter

	Expectation Propagation with Context Adjustment for Smoothing and Filtering of Jump Markov Linear Systems
	Introduction
	Problem Definition
	Expectation Propagation with Context Adjustment for Jump Markov Linear Systems
	Assumed Forms of the Factors
	Derivation of the Updates
	Update of the Forward Factor nf(xn,rn)
	Update for the Backward Factor qnb(xn,rn)
	Computing the Final State Estimates

	Selection of the Adjustment Exponents
	Selection of nf
	Selection of nb

	Pseudo-Code of the Algorithm
	Computational Complexity

	Extension to Filtering Problem
	Pseudo Code of the Filtering Algorithm

	Simulation Results
	Test Scenarios
	Model-Match Scenario
	Model-Mismatch Scenario
	Barber's Scenario

	Results
	Results for the Smoothing Algorithms
	Results for the Filtering Algorithms


	Conclusion

	Expectation Propagation with Context Adjustment for Target Tracking under Measurement Origin Uncertainty 
	Introduction
	Problem Definition
	Expectation Propagation with Context Adjustment for Data Association Problem in Multi-Target Tracking
	Assumed Forms of the Factors
	Derivation of the Updates
	Update of the Forward Factor nf(Xn,rn)
	Update of the Backward Factor qnb(Xn)
	Computing the Final State Estimates

	Selection of the Adjustment Exponents
	Selection of nf
	Selection of nb

	Pseudo-Code of the Algorithm
	Computational Complexity

	Extension to Filtering Problem
	Pseudo Code of the Filtering Algorithm

	Simulation Results
	Test Scenarios
	Nearly Constant Velocity Scenario
	U-Turn Scenario

	Performance Metrics
	Results
	Results for the Smoothing Algorithms
	Results for the Filtering Algorithms


	Conclusion

	Conclusion
	Future Work

	REFERENCES
	M-Projection Involving Pseudo-Likelihoods
	Minimization with respect to the measurement y
	Minimization with respect to the measurement noise covariance R
	Minimization with respect to the measurement matrix C

	Derivations Used in the Factor Updates in JMLS
	Derivations for the Forward Factor, nf(xn,rn)
	Derivations for the Backward Factor qnb(xn,rn)

	Derivations Used in the Factor Updates for Target Tracking under Measurement Origin Uncertainty
	Update of the Forward Factor qnf(Xn,rn)
	Update of the Backward Factor qnb(Xn)

	Gaussian Identities
	Gaussian Algebra
	Moment Matching between a Mixture of Scaled Gaussians and a Scaled Gaussian

	Abel's Theorem abel1989localization
	Proof of (3.9) and (3.10)
	Proof of (A.17)
	Proof of (A.19)
	CURRICULUM VITAE

